Supporting Information

Unravelling the environmental degradation mechanism of perovskite thin films

Nalini V.^{a#}, Gergely N. Nagy^b,^{c#}, Ariful Rahamand, Sreeram K. Kalpathy^e, Tiju Thomas^e, Sumangala T. P.^{a,*}, Mousumi Upadhyay Kahalyb,^{c*}

a Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India

b ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, H-6728, Hungary c Institute of Physics, University of Szeged, Dóm tér 9, H-6720, Szeged, Hungary

d Department of Manufacturing Engineering, School of Mechanical Engineering, Vellore, Institute of Technology, Vellore, Tamil Nadu 632014, India

e Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Madras, Chennai, 600 036, Tamil Nadu, India

E-mail: sumangala.tp @vit.ac.in, Mousumi.upadhyaykahaly@eli-alps.hu

First two authors have equal contribution *sumangala.tp@vit.ac.in; ORCID 0000-0003-4831-9099

* Mousumi.upadhyaykahaly@eli-alps.hu

 Day 1
 Day 11
 Day 21

Fig. S1(a-c) Digital photographs of MAPbI₃ films deposited on glass and stored under ambient conditions for several days. The black-colored film observed on day 1 corresponds to the fresh MAPbI₃ thin film. The formation of a yellow-colored film on day 21 corresponds to the experimentally observed PbI₂ phase after degradation.

Fig. S2 FTIR spectra for degradation study at various intervals on MAPbI₃ thin film

Fig. S3(a-d) Tauc's plot for MAPbI₃ aged thin films were obtained over a period of 21 days at regular intervals for day 4,11,15 and 21 under ambient conditions.

Fig. S4 Urbach energy plot for fresh and old MAI and PbI₂ powders and thin films. a. fresh MAI, b. degraded MAI, c. fresh PbI₂, d. old PbI₂, e. fresh MAI + fresh PbI₂, f. fresh MAI + old PbI₂, g. degraded MAI + fresh PbI₂ and h. degraded MAI + old PbI₂.

Fig. S5 Histogram of particle size distributions of synthesized MAI and PbI₂ precursor powders were calculated for both fresh and old samples. (a) fresh MAI powder (b) old MAI powder, (c) fresh PbI₂ powder and (d) old PbI₂ powder

Fig. S6 Using ImageJ software, a histogram of the grain size distributions for the freshly prepared MAPbI₃ thin film was calculated, showing an average grain size of ~ 237 nm.

Fig. S7 SEM image for the degraded $MAPbI_3$ thin film shows the flake-like structure with hexagonal morphology, which was obtained on day 21 when exposed to ambient conditions.

Fig. S8 (a-f): Elemental composition obtained from EDS spectrum of fresh and old synthesized MAI and PbI₂ precursor powders and the EDS spectrum was also obtained for both fresh and degraded MAPbI₃ thin films exposed to ambient conditions (a) fresh MAI (b) old MAI, (c) fresh PbI₂, (d) old PbI₂, (e) fresh MAPbI₃ thin film; (f) degraded MAPbI₃ thin film.

Fig. S9 Using ImageJ software, a histogram of the grain size distributions for fresh and old MAI and PbI₂ powders. a. fresh MAI + fresh PbI₂, b. fresh MAI + old PbI₂, c. degraded MAI + fresh PbI₂ and d. degraded MAI + old PbI₂.

Fig. S10 The elemental composition obtained from EDS spectrum for the thin films prepared using fresh and old MAI and PbI₂ powders. (a). fresh MAI + fresh PbI₂, (b). fresh MAI + old PbI₂, (c). degraded MAI + fresh PbI₂ and (d). degraded MAI + old PbI₂

/