Hydroflux-Assisted Cold Sintering: Eutectic Mixtures for Boosting Ionic Conductivity in LATP Solid-State Electrolytes

Andrés Mormeneo-Segarra^{a,b}, Sergio Ferrer-Nicomedes^{a,b}, Nuria Vicente-Agut^{a,b} (*), Antonio Barba-Juan^{a,b}

^aDepartment of Chemical Engineering, Universitat Jaume I, 12071, Castellón, Spain

^bInstitute of Ceramic Technology, Universitat Jaume I, 12071, Castellón, Spain

(*) Corresponding author. E-mail: vicenten@uji.es

Supporting Information

Density measurement

The theoretical density of the hydroflux is calculated by the mixing rule, that is:

$$\rho_{Eutectic} = \frac{1}{\frac{\omega_{LiNO_3}}{\rho_{LiNO_3}} + \frac{\omega_{LiOH}}{\rho_{LiOH}}}$$

where ${}^{\omega_{LiNO_3}}$ and ${}^{\omega_{LiOH}}$ stand for the mass fractions of lithium nitrate and lithium hydroxide respectively. The ${}^{\rho_{LiNO_3}}$ and ${}^{\rho_{LiOH}}$ are the densities of lithium nitrate and lithium hydroxide, being 2.38 and 1.46 g/cm³ respectively. To calculate the real density of the mixture LATP-Hydroflux the same procedure has been used but, in this case the theoretical density used for the LATP is 2.91 g/cm³ measured by helium pycnometry.

$$\rho_{Theoretical} = \frac{1}{\frac{\omega_{Hydroflux}}{\rho_{Hydroflux}} + \frac{\omega_{LATP}}{\rho_{LATP}}}$$

To compare the different samples produced is a common methodology to use the relative density, ϕ , that is the quotient of the theoretical and the real density of the sample. As theoretical density of the sample authors used the previous equation. It must be considered that this density depends on the quantities used in the preparation.

$$\phi = \frac{\rho_{Sample}}{\rho_{Theoretical}}$$

The sample's real density is calculated by means of the Arquimedes' method with mercury immersion.

$$\rho_{Sample} = \left(\frac{m_{dry}}{m_{Hg}}\right) \cdot \rho_{Hg}$$

In this equation m_{dry} is the sample's mass after drying overnight, m_{Hg} the mass immersed in mercury and ρ_{Hg} the density of mercury (13.53 g/cm³). When calculating the relative density, the obtention of porosity is a direct calculation because:

$$\phi + \varepsilon = 1$$

where ε is the sample's porosity. The previous equation considers that the sum of solid and pore volume equals one as expected. Results are shown in **Table S1**.

Sample	ω _{Hydroflux}	$\rho_{\text{LATP+Hydroflux}} \left(g/cm^3\right)$	ρ_{Sample} (g/cm ³)	φ (%)
20@solids	0.20	2.71	2.18	80.5
20@no-H ₂ O	0.20	2.71	2.16	79.5
$20@H_2O$	0.20	2.71	2.29	84.3
15@H ₂ O	0.15	2.76	2.31	83.6

 Table S1. Densities of the samples prepared.

T (°C)	1000/T (K ⁻¹)	$R_{tot}(\Omega)$	σ _{tot} (S cm ⁻¹)	ln (σ _{tot} ·T)
87	2.78	390.4	3.68.10-4	-2.020
75	2.87	723.1	1.99.10-4	-2.670
66	2.95	1193.0	1.21.10-4	-3.197
58	3.02	1737.0	8.28.10-5	-3.597
51	3.08	2425.0	5.93·10 ⁻⁵	-3.952
47	3.12	3277.0	4.39·10 ⁻⁵	-4.265
44	3.15	4130.0	3.48.10-5	-4.506
41	3.18	4990.3	2.88.10-5	-4.705
39	3.20	5819.0	2.47.10-5	-4.865
37	3.22	6666.0	2.16.10-5	-5.007
36	3.23	7509.7	1.91·10 ⁻⁵	-5.130
34	3.26	8313.0	1.73.10-5	-5.238
33	3.27	9764.0	1.47.10-5	-5.402
32	3.28	10755.0	1.34.10-5	-5.502
31	3.29	11609.0	1.24.10-5	-5.582
30	3.30	12277.0	$1.17 \cdot 10^{-5}$	-5.641
30	3.30	14885.0	9.66-10-6	-5.833

Table S2. Fitting results of the 20@solids sample.

Table S3. Fitting results of the $20@no-H_2O$ sample.

T (°C)	1000/T (K ⁻¹)	$R_{tot}(\Omega)$	σ _{tot} (S cm ⁻¹)	ln (σ _{tot} ·T)
85	2.79	322.1	4.95.10-4	-1.730
64	2.97	586.1	2.72.10-4	-2.389
57	3.03	767.0	2.08.10-4	-2.679
51	3.08	939.4	1.70.10-4	-2.900
47	3.12	1121.2	1.42.10-4	-3.089
44	3.15	1263.4	1.26.10-4	-3.218
40	3.19	1413.0	1.13.10-4	-3.343
38	3.21	1546.5	1.03.10-4	-3.439
37	3.22	1664.9	9.58·10 ⁻⁵	-3.516
35	3.25	1769.0	9.01·10 ⁻⁵	-3.584
34	3.26	1853.5	8.60.10-5	-3.633
33	3.27	1935.5	8.24.10-5	-3.680
32	3.28	2020.3	7.89.10-5	-3.726
31	3.29	2093.8	7.62.10-5	-3.765
30	3.30	2214.5	7.20.10-5	-3.825
30	3.30	2267.0	7.03·10 ⁻⁵	-3.848

T (°C)	1000/T (K ⁻¹)	$R_{tot}(\Omega)$	σ _{tot} (S cm ⁻¹)	ln (σ _{tot} ·T)
80	2.83	129.4	1.02.10-3	-1.021
75	2.87	157.2	8.40.10-4	-1.230
70	2.91	185.8	7.10.10-4	-1.411
66	2.95	216.1	6.11.10-4	-1.574
62	2.98	250.0	5.28.10-4	-1.732
57	3.03	284.4	4.64.10-4	-1.876
54	3.06	320.4	4.12.10-4	-2.004
50	3.09	361.3	3.65.10-4	-2.136
46	3.13	399.3	3.31.10-4	-2.249
44	3.15	477.9	2.76.10-4	-2.435
38	3.21	590.6	2.24.10-4	-2.666
36	3.23	659.8	2.00.10-4	-2.783
32	3.28	746.0	$1.77 \cdot 10^{-4}$	-2.919
30	3.30	861.7	1.53.10-4	-3.070
30	3.30	874.7	1.51.10-4	-3.085

Table S4. Fitting results of the 20@H₂O sample.

Table S5. Fitting results of the $15@H_2O$ sample.

T (°C)	1000/T (K ⁻¹)	$R_{tot}(\Omega)$	σ_{tot} (S cm ⁻¹)	$\ln (\sigma_{tot} \cdot T)$
68	2.93	812.2	1.93.10-4	-2.720
57	3.03	1185.0	1.32.10-4	-3.130
50	3.09	1647.4	9.52·10 ⁻⁵	-3.481
45	3.14	2122.0	7.39.10-5	-3.750
42	3.17	2474.4	6.34·10 ⁻⁵	-3.913
38	3.21	2908.3	5.39·10 ⁻⁵	-4.088
36	3.23	3319.1	4.73·10 ⁻⁵	-4.226
34	3.26	3702.7	4.24.10-5	-4.342
32	3.28	4019.3	3.90.10-5	-4.431
31	3.29	4328.0	3.62.10-5	-4.508
30	3.30	4663.8	3.36.10-5	-4.586

Composition	P (MPa)	T (°C)	t	d ₅₀ (μm)	TLP	Post-annealing	φ (%)	σ (S cm ⁻¹)	E _a (eV)	Ref.
Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃			NMP (30 vol.	NMP (30 vol.%)		74±2	2.07.10-5	0.41 ± 0.02		
	420	120	11	0204	H ₂ O + NMP (30 vol.%)	(50.00) 21	79±2	2.79.10-5	$0.40{\pm}0.02$	1
	420	120	In	0.3-0.4	Hac - 1M + NMP (30 vol.%)	650 °C - 2n	93±2	8.04.10-5	0.37±0.02	1
					Hac - 1M + DMSO (30 vol.%)		84±2	3.03.10-5	0.39±0.02	
					H ₂ O (20 wt.%) + LiTFSi (0 wt.%)		90.6±0.7	(2.7±0.89)·10 ⁻⁵	0.26	
					H_2O (20 wt.%) + LiTFSi (4 wt.%)		90.7±2.3	(5.9±2.1)·10 ⁻⁵	-	
$Li_{1+x+y}Al_xTi_{2-x}Si_yP_{3-y}O_{12}$	620	130	2h	1.15	H ₂ O (20 wt.%) + LiTFSi (11 wt.%)	No	91.1±0.8	(7.8±1.0)·10 ⁻⁵	-	2
					H ₂ O (20 wt.%) + LiTFSi (17 wt.%)		91.1±2.7	(18±4.7)·10 ⁻⁵	0.26	
					H ₂ O (20 wt.%) + LiTFSi (22 wt.%)		93.4±0.2	(14±1.9)·10 ⁻⁵	-	
	25 2	200	5 min 10 min	1-5	H ₂ O (30 wt.%)	Green samples are heated up to 650 °C for 2 h and after the	-	14.10-5	-	3
$Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$					H ₂ O (30 wt.%)		-	18.10-5	-	
			30 min		H ₂ O (30 wt.%)	CSP was launched	d - 30·10 ⁻⁵ -	-		
	600	140	1h		LiAc·2H ₂ O (3.2 wt.% dry)		75±1.5	0.02.10-5	-	4
	$600 \rightarrow 510$	$140 \rightarrow 200$	$30 \min \rightarrow 1h$		LiAc·2H ₂ O (3.2 wt.% dry)		87±1.5	0.10.10-5	-	
	600	140	1h	0.8	HAc - 1.66M (20 wt.%)	N-	88±1.5	0.25.10-5	-	
$L1_{1.3}A1_{0.3}11_{1.7}(PO_4)_3$	$600 \rightarrow 510$	$140 \rightarrow 200$	$30 \min \rightarrow 1h$	0.8	HAc - 1.66M (20 wt.%)	No	94±1.5	0.82.10-5	-	
	$600 \rightarrow 510$	$140 \rightarrow 200$	$30 \min \rightarrow 1h$		H ₂ O (20 wt.%)		94±1.5	1.26.10-5	-	
	$600 \rightarrow 510$	$140 \rightarrow 200$	$30 \min \rightarrow 1h$	LiOH·H ₂ O - 0.1M (20 wt.%)		90±1.5	-	-		
		150					75.2	-	-	
		200		0.00.010		No	-	-	-	
$Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$	250	250	1h	0.03-0.18	H ₂ O (30 wt.%)		83.0	0.20.10-5	-	5
		250				700 °C - 1h	79.3	0.39.10-5	-	
		230		0.04-0.20		800 °C - 1h	87.7	2.86.10-5	-	

Table S6. Literature review of the LATP obtained via CSP.

									-	
				0.05-0.38		900 °C - 1h	87.4	42.9.10-5	-	
				0.4-1.7		1000 °C - 1h	96.0	14.6.10-5	-	
				0.8-2		1100 °C - 1h	96.3	2.23.10-5	-	
					HAc - $3M + 2$ wt.% Bi_2O_3 (5 wt.%)			0.03 · 10-5	0.565	
					HAc - $3M + 2$ wt.% Bi ₂ O ₃ (10 wt.%)			0.92.10-5	0.368	
$Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$	700	150	1.5h	0.190	HAc - $3M + 2$ wt.% Bi ₂ O ₃ (15 wt.%)	No	95	3.02.10-5	0.367	6
					HAc - $3M + 2$ wt.% Bi ₂ O ₃ (20 wt.%)			3.49.10-5	0.365	
					HAc - $3M + 2$ wt.% Bi ₂ O ₃ (25 wt.%)			4.00.10-5	0.355	
					HAc - 3M (5 wt.%)			5.77.10-5	0.307	
$0.9(\text{Li}_{1.3}\text{Al}_{0.3}\text{Ti}_{1.7}(\text{PO}_4)_3)$	700	150	1 51	0 100	HAc - 3M (10 wt.%)	No	>98	6.94 · 10-5	0.308	7
0.1(2PEO:LiTFSi)	700	150	1.511	0.190	HAc - 3M (12.5 wt.%)			9.50.10-5	0.306	
					HAc - 3M (15 wt.%)			13.2.10-5	0.298	
				0.190	HAc - 3M (25 wt.%)	No	82*	3.70.10-5	0.36	
		150	1.5h		HAc - $3M + 1$ wt.% Bi_2O_3 (25 wt.%)			4.47.10-5	0.37	
	700				HAc - $3M + 2$ wt.% Bi ₂ O ₃ (25 wt.%)			4.48.10-5	0.35	8
$L_{1,3}A_{10,3}H_{1,7}(FO_4)_3$	700	150			HAc - $3M + 3$ wt.% Bi ₂ O ₃ (25 wt.%)			4.45.10-5	0.35	
					HAc - $3M + 4$ wt.% Bi_2O_3 (25 wt.%)			3.97.10-5	0.35	
					HAc - $3M$ + 5 wt.% Bi ₂ O ₃ (25 wt.%)			3.73.10-5	0.35	
				1.208	HAc - 3M (15 wt.%)		78.7*	0.37.10-5	0.560	
				0.875	HAc - 3M (15 wt.%)		80.2*	11.7.10-5	0.343	
				0.645	HAc - 3M (15 wt.%)		81.1*	8.41.10-5	0.372	
	700	150	1.5h	0.415	HAc - 3M (15 wt.%)	No	81.8*	5.55.10-5	0.384	9
L1 _{1.3} Al _{0.3} T1 _{1.7} (PO ₄) ₃	700	150	1.5h	0.190	HAc - 3M (15 wt.%)	No	81.9*	3.09.10-5	0.389	, ,
				1.208	HAc - 3M (17.5 wt.%)		78.7*	3.86.10-5	0.383	
				1.208	HAc - 3M (20 wt.%)		78.5*	16.9.10-5	0.317	
				0.875	HAc - 3M (20 wt.%)		79.8*	12.5.10-5	0.356	

0.645	HAc - 3M (20 wt.%)	80.8*	8.21.10-5	0.384
0.415	HAc - 3M (20 wt.%)	81.2*	6.90.10-5	0.363
0.376	HAc - 3M (20 wt.%)	81.2*	6.40.10-5	0.368
0.268	HAc - 3M (20 wt.%)	81.4*	5.17.10-5	0.380
0.190	HAc - 3M (20 wt.%)	81.5*	3.15.10-5	0.386

*Measured by mercury inmersion, considering open and closed porosity

References

- Y. Liu, J. Liu, Q. Sun, D. Wang, K. R. Adair, J. Liang, C. Zhang, L. Zhang, S. Lu,
 H. Huang, X. Song and X. Sun, ACS Appl Mater Interfaces, 2019, 11, 27890– 27896.
- W. Lee, C. K. Lyon, J. H. Seo, R. Lopez-Hallman, Y. Leng, C. Y. Wang, M. A. Hickner, C. A. Randall and E. D. Gomez, *Adv Funct Mater*, , DOI:10.1002/ADFM.201807872.
- 3 N. Hamao, Y. Yamaguchi and K. Hamamoto, *Materials*, 2021, 14, 4737.
- M. Vinnichenko, K. Waetzig, A. Aurich, C. Baumgaertner, M. Herrmann, C. W.
 Ho, M. Kusnezoff and C. W. Lee, *Nanomaterials (Basel)*, 2022, 12, 3178.
- 5 H. Cai, T. Yu, D. Xie, B. Sun, J. Cheng, L. Li, X. Bao and H. Zhang, *J Alloys Compd*, 2023, **939**, 168702.
- 6 A. Mormeneo-Segarra, S. Ferrer-Nicomedes, N. Vicente-Agut and A. Barba-Juan, *Ceram Int*, 2023, **49**, 36497–36506.
- S. Ferrer-Nicomedes, A. Mormeneo-Segarra, N. Vicente-Agut and A. Barba-Juan,
 J Power Sources, 2023, 581, 233494.
- 8 A. Mormeneo-Segarra, S. Ferrer-Nicomedes, S. Simon, N. Vicente-Agut, J. C. Jarque-Fonfría and A. Barba-Juan, *Solid State Ion*, 2024, **406**, 116482.
- 9 A. Mormeneo-Segarra, S. Ferrer-Nicomedes, N. Vicente-Agut and A. Barba-Juan, *J Eur Ceram Soc*, 2024, 44, 5105–5114.