## **ELECTRONIC SUPPLEMENTARY INFORMATION**

## Surface Engineering: Binary MgFe-LDH·xFe<sub>3</sub>O<sub>4</sub> nanocomposites for Improved Magnetic Solid-Phase Extraction of Pharmaceuticals from Aqueous Solution

Tetiana Hubetska<sup>1,2</sup>, Victor Demchenko<sup>1</sup>, Natalia Kobylinska<sup>1\*</sup>

<sup>1</sup>A.V. Dumansky Institute of Colloid and Water Chemistry, National Academy of Science of Ukraine, 42 Akad. Vernadsky Blvd, Kyiv, 03142, Ukraine <sup>2</sup>Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Avda. de la Vega 4-6, El Entrego, 33940, Spain

\*Corresponding author: Dr. Natalia Kobylinska

e-mail: kobilinskaya@univ.kiev.ua



**Figure S1.** UV-Vis spectra of Diclofenac Sodium solution in the full linearity range



*Figure S2.* Calibration curves for determination of Diclofenac Sodium at various wavelengths: 276 nm and 199 nm



**Figure S3.** SEM images of pristine  $Fe_3O_4$  (a),  $Mg_4Fe_-LDHs$  (b),  $Mg_4Fe_-LDH \cdot 0.1Fe_3O_4$  (c),  $Mg_4Fe_-LDH \cdot 0.3Fe_3O_4$  (d),  $Mg_4Fe_-LDH \cdot 0.5Fe_3O_4$  (e) and  $Mg_4Fe_-LDH \cdot 1.0Fe_3O_4$  (f) samples



Figure S4. EDX mapping (a) and spectrum (b) of Mg, Fe-LDHs sample



*Figure S5.* XRD patterns of *Mg,Fe-LDH-0.3Fe<sub>3</sub>O<sub>4</sub>* calcinated at 800°C and corresponding references (MgFe<sub>2</sub>O<sub>4</sub> (# 38997-ICSD) and MgO (# 29127-ICSD))from ICSD database



Figure S6. Speciation diagram of DCF as a function of the pH solution



*Figure S7.* The  $pH_{PZC}$  determination for obtained adsorbents (*Conditions*: weight 0.050 g, volume 50 mL, time 24 h, C(NaClO<sub>4</sub>) = 0.1 M)

*Table S1.* Parameters for the intra-particle diffusion kinetic model of the asprepared materials

| Sample                                       | 1 <sup>st</sup> stage |        |                | 2 <sup>nd</sup> stage |       |                       | 3 <sup>rd</sup> stage |        |                       |
|----------------------------------------------|-----------------------|--------|----------------|-----------------------|-------|-----------------------|-----------------------|--------|-----------------------|
|                                              | Ki                    | С      | R <sup>2</sup> | Ki                    | С     | <b>R</b> <sup>2</sup> | Ki                    | С      | <b>R</b> <sup>2</sup> |
| Mg,Fe-LDHs                                   | 0.0463                | 0.0012 | 0.9996         | 0.024                 | 0.134 | 0.9279                | 0.00075               | 0.3781 | 0.7494                |
| Mg,Fe-LDH·0.3Fe <sub>3</sub> O <sub>4</sub>  | 0.0407                | 0.0028 | 0.9974         | 0.023                 | 0.109 | 0.9224                | 0.0016                | 0.332  | 0.8836                |
| Mg,Fe-LDH ·0.5Fe <sub>3</sub> O <sub>4</sub> | 0.0295                | 0.0016 | 0.9974         | 0.020                 | 0.062 | 0.9447                | 0.0310                | 0.2392 | 0.8394                |
| Fe <sub>3</sub> O <sub>4</sub>               | 0.00265               | 0.0005 | 0.9805         | -                     | -     | -                     | 0.0009                | 0.0158 | 0.9142                |

Table footnotes.  $K_i$  - rate constant of intraparticle diffusion, (mmol·g<sup>-1</sup> min<sup>-1/2</sup>); C - the intercept, (mmol/g).



**Figure S8.** Adsorption isotherms (mmol/g) of DCF onto *Mg*,*Fe*-*LDHs* and corresponding magnetic nanocomposites at room temperature (*Conditions:*  $pH = 7.5 \pm 0.1$ , m/V = 1.00 g/L, time overnight, at room temperature)





**Figure** *S***9.** Linear fitting of adsorption isotherms with Langmuir (*a*), Freundlish (*b*) and Temkin (c) equations for DCF on obtained samples