## **Supplementary Information**

## Investigating Pressure-Driven Semiconductor-to-Metal Transition in Lead-Free Perovskites AlGeX<sub>3</sub> (X= F, Cl, and Br): Insights from First-Principles

## Calculations

Md. Amran Sarker <sup>1,2</sup>, Md Mehedi Hasan <sup>2</sup>, Md. Rafiqul Islam <sup>3</sup>, Md. Rabbi Talukder <sup>2</sup>, Md. Rasidul Islam <sup>4</sup>, Ahmed Sharif <sup>1</sup>

<sup>1</sup>Department of Materials and Metallurgical Engineering, Bangladesh University of Engineering &

Technology (BUET), Dhaka 1000, Bangladesh.

<sup>2</sup>Department of Materials Science and Engineering, Khulna University of Engineering & Technology

(KUET), Khulna 9203, Bangladesh.

<sup>3</sup>Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology

(KUET), Khulna 9203, Bangladesh.

<sup>4</sup>Department of Electrical and Electronic Engineering, Bangamata Sheikh Fojilatunnesa Mujib Science & Technology University, Jamalpur-2012, Bangladesh.

\*Corresponding Author's Email:



Fig. S1 Band structure of AlGeF<sub>3</sub> under hydrostatic pressure.



Fig. S2 Band structure of AlGeCl<sub>3</sub> under hydrostatic pressure.



Fig. S3 Band structure of AlGeBr<sub>3</sub> under hydrostatic pressure.



Fig. S4 The calculated TDOS and PDOS of cubic AlGeF<sub>3</sub> perovskites under pressure.



Fig. S5 The calculated TDOS and PDOS of cubic AlGeCl<sub>3</sub> perovskites under pressures.



Fig. S6 The calculated TDOS and PDOS of cubic AlGeBr<sub>3</sub> perovskites under pressures.

Table S1: The calculated lattice parameters (a), cell volume (V), formation energy ( $\Delta H_f$ ), and band gap (E<sub>g</sub>) of AlGeX<sub>3</sub> (X = F, Cl, and Br) at different pressures.

| Pressure (GPa) | a(Å)  | V(Å <sup>3</sup> ) | $\Delta H_{f}$ (eV/atom) | Eg(eV) |
|----------------|-------|--------------------|--------------------------|--------|
| 0              | 4.456 | 88.48              | -4.455                   | 1.115  |
| 2              | 4.401 | 85.24              | -4.308                   | 0.897  |
| 4              | 4.355 | 82.61              | -4.108                   | 0.717  |
| 6              | 4.315 | 80.34              | -3.908                   | 0.513  |
| 10             | 4.245 | 76.48              | -3.508                   | 0.155  |
| 15             | 4.173 | 72.69              | -2.908                   | 0      |

| (a) AlGeF3 | 3 |
|------------|---|
|------------|---|

(b) AlGeCl<sub>3</sub>

| Pressure (GPa) | a(Å)  | V(Å <sup>3</sup> ) | $\Delta \mathbf{E_f} (\mathbf{eV}/\mathbf{atom})$ | E <sub>g</sub> (eV) |
|----------------|-------|--------------------|---------------------------------------------------|---------------------|
| 0              | 5.215 | 141.83             | -3.370                                            | 0.760               |
| 1              | 5.156 | 137.10             | -3.295                                            | 0.565               |
| 2              | 5.106 | 133.16             | -3.095                                            | 0.361               |
| 3              | 5.061 | 129.61             | -2.895                                            | 0.144               |
| 4              | 5.019 | 126.41             | -2.695                                            | 0                   |

(c) AlGeBr<sub>3</sub>

| Pressure (GPa) | a(Å)  | V(Å <sup>3</sup> ) | $\Delta E_{f}$ (eV/atom) | Eg(eV) |
|----------------|-------|--------------------|--------------------------|--------|
| 0              | 5.471 | 163.72             | -3.045                   | 0.433  |
| 0.5            | 5.434 | 160.44             | -2.968                   | 0.327  |
| 1.5            | 5.370 | 154.80             | -2.768                   | 0.128  |
| 2.5            | 5.313 | 149.99             | -2.568                   | 0      |

|                   | AlGeF <sub>3</sub> |                       |                   | AlGeCl <sub>3</sub> |                       | AlGeBr <sub>3</sub> |         |                       |  |
|-------------------|--------------------|-----------------------|-------------------|---------------------|-----------------------|---------------------|---------|-----------------------|--|
| Pressure<br>(GPa) |                    | Bond<br>length<br>(Å) | Pressure<br>(GPa) |                     | Bond<br>length<br>(Å) | Pressure<br>(GPa)   |         | Bond<br>length<br>(Å) |  |
|                   | Ge-F               | 2.22797               |                   | Ge-Cl               | 2.60752               |                     | Ge-Br   | 2.73528               |  |
| 0GPa              | Al-F               | 3.15083               | 0GPa              | Al-Cl               | 3.68759               | 0GPa                | Al-Br   | 3.86827               |  |
|                   | Al-Ge              | 3.85897               |                   | Al-Ge               | 4.51636               |                     | Al-Ge   | 4.73764               |  |
|                   | Ge-F               | 2.20052               |                   | Ge-Cl               | 2.57817               |                     | Ge-Br   | 2.71692               |  |
| 2GPa Al-I<br>Al-C | Al-F               | 3.11200               | 1GPa              | Al-Cl               | 3.64608               | 0.5GPa              | Al-Br   | 3.84231               |  |
|                   | Al-Ge              | 3.81141               |                   | Al-Ge               | 4.46552               |                     | Al-Ge   | 4.70585               |  |
|                   | Ge-F 2.17765       |                       | Ge-Cl             | 2.55327             |                       | Ge-Br               | 2.68466 |                       |  |
| 4GPa              | Al-F               | 3.07967               | 2GPa              | Al-Cl               | 3.61087               | 1.5GPa              | Al-Br   | 3.79668               |  |
|                   | Al-Ge              | 3.77180               |                   | Al-Ge               | 4.42239               |                     | Al-Ge   | 4.64997               |  |
|                   | Ge-F               | 2.15747               |                   | Ge-Cl               | 2.53033               |                     | Ge-Br   | 2.65663               |  |
| 6GPa              | Al-F               | 3.05113               | 3GPa              | Al-Cl               | 3.57843               | 2.5GPa              | Al-Br   | 3.75704               |  |
|                   | Al-Ge              | 3.73686               |                   | Al-Ge               | 4.38266               |                     | Al-Ge   | 4.60141               |  |
|                   | Ge-F               | 2.12233               |                   | Ge-Cl               | 2.50934               |                     |         |                       |  |
| 10GPa             | Al-F               | 3.00142               | 4GPa              | Al-Cl               | 3.54874               |                     |         |                       |  |
|                   | Al-Ge              | 3.67598               |                   | Al-Ge               | 4.34630               |                     |         |                       |  |
|                   | Ge-F               | 2.08669               |                   |                     |                       |                     |         |                       |  |
| 15GPa             | Al-F               | 2.95103               |                   |                     |                       |                     |         |                       |  |
|                   | Al-Ge              | 3.61426               |                   |                     |                       |                     |         |                       |  |

Table S2: Variation in bond length of cubic  $AlGeX_3$  (X = F, Cl, and Br) at different pressure

Table S3(a): The calculated elastic constants, bulk modulus (B), shear modulus (G), Young's modulus (E), Pugh's ration, Poisson's ratio (v), hardness ( $H_v$ ), and machinability index ( $\mu$ M) of AlGeF<sub>3</sub> under hydrostatic pressure.

| Pressure<br>(GPa) | C <sub>11</sub> | C <sub>12</sub> | C <sub>44</sub> | C <sub>12</sub> -C <sub>44</sub> | B<br>(Gpa) | G<br>(Gpa) | Е     | B/G  | υ      | H <sub>v</sub> | $\mu_{M}$ |
|-------------------|-----------------|-----------------|-----------------|----------------------------------|------------|------------|-------|------|--------|----------------|-----------|
| 0                 | 72.41           | 26.32           | 9.17            | 17.15                            | 41.68      | 13.40      | 36.31 | 3.11 | 0.3548 | 1.5907         | 4.5436    |
| 2                 | 84.94           | 25.48           | 4.48            | 21.00                            | 45.30      | 10.68      | 29.72 | 4.24 | 0.3907 | 0.9525         | 10.1113   |
| 4                 | 101.82          | 32.64           | 5.04            | 27.60                            | 55.70      | 12.25      | 34.25 | 4.55 | 0.3975 | 0.9696         | 11.0523   |
| 6                 | 122.13          | 38.75           | 8.05            | 30.70                            | 66.54      | 16.70      | 46.22 | 3.99 | 0.3842 | 1.4017         | 8.2661    |
| 10                | 152.74          | 50.38           | 7.03            | 43.35                            | 84.50      | 17.71      | 49.66 | 4.77 | 0.4021 | 1.1911         | 12.0201   |
| 15                | 174.11          | 61.93           | 8.09            | 53.84                            | 99.32      | 19.79      | 55.68 | 5.02 | 0.4066 | 1.2166         | 12.2774   |

Table S3(b): Changes in anisotropy of cubic AlGeF<sub>3</sub> under hydrostatic pressure.

| Pressure<br>(GPa) | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | Α      | A <sub>G</sub> | A <sub>B</sub> | A <sup>U</sup> | A <sup>eq</sup> |
|-------------------|----------------|----------------|----------------|--------|----------------|----------------|----------------|-----------------|
| 0                 | 0.3981         | 0.3981         | 0.3981         | 0.3981 | 0.1970         | 0              | 1.0924         | 2.5123          |
| 2                 | 0.1507         | 0.1507         | 0.1507         | 0.1507 | 0.7296         | 0              | 5.7428         | 6.6350          |
| 4                 | 0.1456         | 0.1456         | 0.1456         | 0.1456 | 0.7513         | 0              | 6.0168         | 6.8684          |
| 6                 | 0.1931         | 0.1931         | 0.1931         | 0.1931 | 0.5761         | 0              | 4.0462         | 5.1788          |
| 10                | 0.1374         | 0.1374         | 0.1374         | 0.1374 | 0.7880         | 0              | 6.5010         | 7.2801          |
| 15                | 0.1442         | 0.1442         | 0.1442         | 0.1442 | 0.7574         | 0              | 6.0953         | 6.9352          |

Table S4(a): The calculated elastic constants, bulk modulus (B), shear modulus (G), Young's modulus (E), Pugh's ration, Poisson's ratio (v), hardness (H<sub>v</sub>), and machinability index ( $\mu_M$ ) of AlGeCl<sub>3</sub> under hydrostatic pressure.

| Pressure<br>(GPa) | C <sub>11</sub> | C <sub>12</sub> | C <sub>44</sub> | C <sub>12</sub> -C <sub>44</sub> | B<br>(Gpa) | G<br>(Gpa) | Y     | B/G  | U      | H <sub>v</sub> | μ <sub>M</sub> |
|-------------------|-----------------|-----------------|-----------------|----------------------------------|------------|------------|-------|------|--------|----------------|----------------|
| 0                 | 60.47           | 11.78           | 6.15            | 5.63                             | 28.01      | 11.10      | 29.41 | 2.52 | 0.3250 | 1.7641         | 4.5581         |
| 1                 | 70.28           | 13.91           | 6.16            | 7.75                             | 32.70      | 11.97      | 32.00 | 2.73 | 0.3369 | 1.7009         | 5.3084         |
| 2                 | 77.04           | 13.46           | 6.18            | 7.28                             | 34.65      | 12.77      | 34.13 | 2.71 | 0.3359 | 1.7957         | 5.6070         |
| 3                 | 83.50           | 12.67           | 6.19            | 6.48                             | 36.28      | 13.56      | 36.17 | 2.68 | 0.3338 | 1.9031         | 5.8610         |
| 4                 | 99.11           | 21.11           | 6.21            | 14.9                             | 47.11      | 14.34      | 39.06 | 3.29 | 0.3618 | 1.5681         | 7.5864         |

Table S4(b): Changes in anisotropy of cubic AlGeCl<sub>3</sub> under hydrostatic pressure.

| Pressure<br>(GPa) | A <sub>1</sub> | A <sub>2</sub> | <b>A</b> <sub>3</sub> | A      | A <sub>G</sub> | A <sub>B</sub> | A <sup>U</sup> | A <sup>eq</sup> |
|-------------------|----------------|----------------|-----------------------|--------|----------------|----------------|----------------|-----------------|
| 0                 | 0.2524         | 0.2524         | 0.2524                | 0.2524 | 0.4198         | 0              | 2.6570         | 3.9618          |
| 1                 | 0.2187         | 0.2187         | 0.2187                | 0.2187 | 0.5019         | 0              | 3.3504         | 4.5733          |
| 2                 | 0.1944         | 0.1944         | 0.1944                | 0.1944 | 0.5720         | 0              | 4.0057         | 5.1436          |
| 3                 | 0.1748         | 0.1748         | 0.1748                | 0.1748 | 0.6373         | 0              | 4.6765         | 5.7224          |
| 4                 | 0.1593         | 0.1593         | 0.1593                | 0.1593 | 0.6950         | 0              | 5.3259         | 6.2790          |

Table S5(a): The calculated elastic constants, bulk modulus (B), shear modulus (G), Young's modulus (E), Pugh's ration, Poisson's ratio (v), hardness (H<sub>v</sub>), and machinability index ( $\mu_M$ ) of AlGeBr<sub>3</sub> under hydrostatic pressure.

| Pressure |                 |                 |                 |                                  | В     | G     |       |      |        |                |               |
|----------|-----------------|-----------------|-----------------|----------------------------------|-------|-------|-------|------|--------|----------------|---------------|
| (GPa)    | C <sub>11</sub> | C <sub>12</sub> | C <sub>44</sub> | C <sub>12</sub> -C <sub>44</sub> | (Gpa) | (Gpa) | Y     | B/G  | U      | H <sub>v</sub> | $\mu_{\rm M}$ |
| 0        | 53.85           | 9.77            | 5.60            | 4.17                             | 24.46 | 10.08 | 26.59 | 2.43 | 0.3188 | 1.7242         | 4.3661        |
| 0.5      | 58.32           | 10.09           | 5.71            | 4.38                             | 26.16 | 10.65 | 28.12 | 2.46 | 0.3209 | 1.7659         | 4.5822        |
| 1.5      | 67.40           | 11.18           | 5.92            | 5.26                             | 29.92 | 11.73 | 31.12 | 2.55 | 0.3267 | 1.8125         | 5.0540        |
| 2.5      | 76.07           | 12.10           | 6.13            | 5.97                             | 33.42 | 12.76 | 33.96 | 2.62 | 0.3307 | 1.8678         | 5.4524        |

Table S5(b): Changes in anisotropy of cubic AlGeBr<sub>3</sub> under hydrostatic pressure.

| Pressure<br>(GPa) | A <sub>1</sub> | $\mathbf{A}_2$ | $\mathbf{A}_{3}$ | A      | A <sub>G</sub> | A <sub>B</sub> | A <sup>U</sup> | A <sup>eq</sup> |
|-------------------|----------------|----------------|------------------|--------|----------------|----------------|----------------|-----------------|
| 0                 | 0.2542         | 0.2542         | 0.2542           | 0.2542 | 0.4160         | 0              | 2.6260         | 3.9341          |
| 0.5               | 0.2367         | 0.2367         | 0.2367           | 0.2367 | 0.4560         | 0              | 2.9530         | 4.2241          |
| 1.5               | 0.2107         | 0.2107         | 0.2107           | 0.2107 | 0.5237         | 0              | 3.5470         | 4.7451          |
| 2.5               | 0.1915         | 0.1915         | 0.1915           | 0.1915 | 0.5811         | 0              | 4.0958         | 5.2217          |



Fig. S7 Anisotropic 3D representation of Young's modulus, shear modulus, and Poisson's ratio of  $AlGeF_3$  at different pressures.



Fig. S8 Anisotropic 3D representation of Young's modulus, shear modulus, and Poisson's ratio of AlGeCl<sub>3</sub> at different pressures.



Fig. S9 Anisotropic 3D representation of Young's modulus, shear modulus, and Poisson's ratio of  $AlGeBr_3$  at different pressure.