An antifouling and antiviral superhydrophobic elastomer formed by 3D-printing and a peptide-based coating

Tan Hu^{ab}, Noa Trink^{ab}, Shlomo Magdassi^{ab*} and Meital Reches^{ab*}

- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- b. Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore

Build Parameters	Value
Light intensity	25mW/cm ²
Slice Thickness	0.025 mm
Burn-in layers	2 layers
Separation distance	15
Separation velocity	0.8
Approach velocity	1
Exposure (burning time)	10 sec
Exposure time	1.2 sec
Normal wait time (after exposure)	3 sec
Normal wait time (after separation)	0 sec
Normal wait time (after approach)	0 sec
Normal Approach Pressure Limit	100
Burn-in wait time (after exposure)	3 sec
Burn-in wait time (after separation)	5 sec
Burn-in wait time (after approach)	0 sec
Burn-in Approach Pressure Limit	100
LED wavelength	385 nm
Pixel size	0.035 mm

Table S1: Printing parameters for Asiga Max X35