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Theoretical Methods 

All calculations in this work were carried out by the implementation of DFT in the SIESTA 1 

code. It is used to obtain the optimized geometries of the structures, as shown in Figure S2. 

SIESTA code is an acronym derived from the Spanish Initiative for Electronic Simulations with 

Thousands of Atoms. The quantum transport theory (QTT) implemented in GOLLUM 2 code 

which is a program that computes the charge, spin and electronic contribution to the thermal 

transport properties of multi-terminal junctions has been utilized to calculate the electronic 

and thermoelectric properties of all molecular junctions. The initial optimization of gas phase 

molecules and isosurfaces calculations were carried out at the B3LYP level of theory 3 with a 

LANL2DZ basis set. 1,4 All, theories and computational methods and procedures are shown in 

Figure S1. The optimized geometry, ground state Hamiltonian and overlap matrix elements of 
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each structure were self-consistently obtained using the SIESTA code. SIESTA employs norm-

conserving pseudo-potentials to account for the core electrons and linear combinations of 

atomic orbitals to construct the valence states. The generalized gradient approximation (GGA) 

of the exchange and correlation functional is used with a double-ζ polarized (DZP) basis set, a 

real-space grid defined with an equivalent energy cut-off of 250 Ry. The geometry 

optimization for each structure is performed to the forces smaller than 20 meV/Å. The mean-

field Hamiltonian obtained from the converged DFT calculation was combined with GOLLUM. 

The transmission coefficient T(E) for electrons of energy E (passing from the source over 

molecule to the drain) is calculated via the relation: 

                            (1)𝑇(𝐸) = 𝑇𝑟{Γ𝑅(𝐸)𝐺𝑅(𝐸)Γ𝐿(𝐸)𝐺𝑅 † (𝐸)}

In this expression,

                                        (2)Γ𝐿,𝑅(𝐸) = 𝑖(Σ𝐿,𝑅(𝐸) ‒ Σ †
𝐿,𝑅(𝐸))

ΓL,R describes the level broadening due to the coupling between left (L) and right (R) electrodes 

and the central scattering region, ΣL,R(E) are the retarded self-energies associated with this 

coupling.

                                           (3)𝐺𝑅 = (𝐸Ӽ ‒ 𝐻 ‒ Σ𝐿 ‒ Σ𝑅) ‒ 1

GR is the retarded Green’s function, where H is the Hamiltonian and Ӽ is the overlap matrix 

(both of them are obtained from SIESTA). The transport properties is then calculated using the 

Landauer formula:

                                (4)
𝐺 = 𝐺○∫𝑑𝐸 𝑇(𝐸)( ‒ ∂𝑓(𝐸,𝑇)/∂𝐸)
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where  is the conductance quantum,  is the 𝐺0 = 2𝑒2/ℎ 𝑓(𝐸) = (1 + 𝑒𝑥𝑝((𝐸 ‒ 𝐸𝐹)/𝑘𝐵𝑇)) ‒ 1

Fermi-Dirac distribution function, T is the temperature and kB = 8.6×10-5 eV/K is Boltzmann’s 

constant, EF is the Fermi energy, e is electron charge and h is the Planck’s constant. The 

thermopower or Seebeck coefficient S is defined as the difference of electrochemical potential 

per unit temperature difference developing across an electrically isolated sample exposed to 

a temperature gradient. The Seebeck coefficients and power factor (P) are informative 

properties. Provided the transmission function, T(E), can be approximated by a straight line 

on the scale of KBT, the Seebeck coefficient is given by: 

                                          (5)
𝑆 ≈  ‒ 𝐿|𝑒|𝑇(𝑑𝑙𝑛 𝑇(𝐸)

𝑑𝐸 )𝐸 = 𝐸𝐹

 Where L is the Lorenz number WΩK-2. In other words, S is 
𝐿 =  (𝑘𝐵

𝑒 )2𝜋2

3
= 2.44 × 10 ‒ 8 

proportional to the negative of the slope of lnT(E), evaluated at the Fermi energy. The power 

factor is the ratio of the real power absorbed by the load to the apparent power flowing in the 

circuit. Real power is the average of the instantaneous product of voltage and current and 

represents the capacity of the electricity for performing work. Based on the Seebeck 

coefficient, and electrical conductance (G) the power factor was calculated as given in 

equation (6)

P = GS2 T                                                                      (6)

where T is the temperature T = 300 K, G is the electrical conductance and S is the Seebeck 

coefficient. In conventional devices the maximum efficiency of either heat transfer or current 

generation is proportional to the dimensionless thermoelectric figure of merit (ZT). The 

common measure for thermoelectric efficiency is given by ZT, which is given by: 5
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                                                           (7)
𝑍𝑇 =  

𝐺𝑆2

𝑘𝑒𝑙 + 𝑘𝑝ℎ
𝑇

Where G is the electrical conductance, S is the Seebeck coefficient, kel is the electron thermal 

conductance, kph is the phonon thermal conductance. 

The figure of merit is determined from the thermoelectric transport coefficients in equations 

5, 8, 9 and 11 in the linear response regime. 6,7

                                                                   (8)
𝐺 =  

2𝑒2

ℎ
𝑘0

                                                    (9)
𝑘𝑒𝑙 =  

2
ℎ𝑇(𝐾2 ‒

𝐾2
1

𝐾0)
In the expressions e = |e| is the absolute value of the electron charge, h is the Planck constant, 

and T = (TL + TR)/2 is the average junction temperature. The coefficients in 8 and 9 are defined 

as:

                (10)
𝑘𝑛 =  ∫𝑑𝐸 𝑇𝑒𝑙(𝐸)( ‒

∂𝑓(𝐸)
∂𝐸 )(𝐸 ‒ 𝜇)𝑛

where Tel(E) is the electron transmission, and the chemical potential μ ≈ EF is approximately 

given by the Fermi energy EF of the gold electrodes. The corresponding thermal conductance 

due to the phonons is given in linear response by:

                         (11)
𝑘𝑝ℎ =  

1
ℎ

 
∞

∫
0

𝑑𝐸 𝐸𝑇𝑝ℎ(𝐸)
∂𝑛(𝐸,𝑇)

∂𝑇

where Tph(E) is the phonon transmission and n(E,T ) = {exp(E/kBT ) − 1}−1 is the Bose function, 

characterizing the phonon reservoirs in the left and right electrodes.

Hence, an upper bound for ZT in the limit of vanishing phonon thermal transport kph → 0 is 

given by the purely electronic contribution 6 as 
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                                                (12)
𝑍𝑒𝑙𝑇 =  

𝑆2𝐺
𝑘𝑒𝑙

𝑇 =  
𝑆2

𝐿

The Lorenz number is L = kel/GT. Hence, the figure of merit could be presented in a slightly 

different form as:

                                                      (13)

𝑍𝑇 =  
𝑍𝑒𝑙𝑇

1 +
𝑘𝑝ℎ

𝑘𝑒𝑙

Equation 13 was used to calculate the electronic figure of merit (ZelT).

 Figure S1. Computational methods and steps.
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All molecules in a gas phase has been designed using Avogadro 8 visualizer, then the ground-

state energy optimization of molecules and iso-surfaces calculations achieved using Gaussian 

9 program. The second step involves the rotation, sorting and linking the molecules to the gold 

electrodes to obtain the theoretical models of molecular junctions (see Figure S2), using a set 

of FORTRAN algorithms. After that the molecular junctions (source│molecule│drain) have 

been optimized using SIESTA. 1 The data (Hamiltonian and overlap matrix) was then fed to 

Gollum code, which calculating the electronic and thermoelectric properties of all molecular 

junctions. 

Theoretical Models of Molecular Junctions
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Figure S2. Theoretical models of molecular junctions.

Theoretical model of molecular junctions was constructed using eight layers of (111)-oriented 

bulk gold with each layer consisting of 6×6 atoms and a layer spacing of 0.235 nm were used 

to create the molecular junctions. These layers were then further repeated to yield infinitely 
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long current carrying gold electrodes. Each molecule was attached to two (111)-directed gold 

electrodes; one of these electrodes was pyramidal, representing the tip of scanning tunelling 

microscopy (STM), while the other was a planar slab representing the electrode formed by the 

idealized Au(111) substrate in the I(s)-based molecular junction. The molecules and first layers 

of gold atoms within each electrode were then allowed to relax again, to yield the optimal 

junction geometries. From these model junctions the transmission coefficient, T(E), was 

calculated using the GOLLUM code. 10-12 
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