Supplementary Information

Localized Cancer Photodynamic Therapy approach based on Core-Shell Electrospun Nanofibers

Sofia M. Costa,^{*a*,*} Leandro M. O. Lourenço,^{*b*} Ricardo C. Calhelha,^{*c*,*d*} Isabel Calejo,^{*e*} Cristina C. Barrias,^{*e*,*f*,*g*} Raul Fangueiro^{*a*} and Diana P. Ferreira^{*a*,*}

^{*a*}. Centre for Textile Science and Technology (2C2T), University of Minho, 4800–058 Guimarães, Portugal.

^{b.} LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.

^{c.} Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.

^{*d.*} Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.

^{e.} i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.

^{f.} INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Portugal.

^{g.} ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal.

*Corresponding authors: sofiamcosta@det.uminho.pt and diana.ferreira@det.uminho.pt

Contents

1.	Structural characterization of TPPF ₁₆ [S-CH ₂ -COOH] ₄	.2
2.	Singlet oxygen generation	.4
3.	Confocal Laser Scanning Microscopy (CLSM)	.4

1. Structural characterization of TPPF₁₆[S-CH₂-COOH]₄

¹H NMR (300 MHz, DMSO- d_6): δ -3.20 (s, 2H), 4.03 (s, 8H, -CH₂), 9.35 (s, 8H, β -H). ¹⁹F NMR (282 MHz, DMSO- d_6): δ -163.44 (dd, J = 10.6 and 26.5 Hz, 8F, Ar-m-F), -158.45 (dd, J = 10.6 and 26.5 Hz, 8F, Ar-o-F). ¹³C NMR (126 MHz, CD₃OD): δ 70.3, 105.9, 117.8, 121.3, 126.8, 128.2, 129.7, 136.1, 139.1, 146.7, 147.3, 148.7, 149.3, 157.1, 180.9. HRMS (ESI) m/z: calcd for C₅₂H₂₂F₁₆N₄O₈S₄ (M+H)⁺: 1263,0065; found 1263.0084.

Fig. S1 ¹H NMR spectroscopy of TPPF₁₆[S-CH₂-COOH]₄ in DMSO-d₆.

Fig. S3 ¹³C NMR spectroscopy of TPPF₁₆[S-CH₂-COOH]₄ in CD₃OD.

Fig. S4 ESI-HRMS of TPPF₁₆[S-CH₂-COOH]₄.

2. Singlet oxygen generation

Fig. S5 Time-dependent photodecomposition of 9,10-DMA (~135 μ M) alone and in the presence of **TPPF**₁₆**[S-CH**₂-**COOH]**₄ at an OD at ~420 nm of ~0.3 in DMF upon irradiation with red light LEDs (418 nm ± 1 nm). Error bars indicate the SD and in some cases are collapsed with the symbols.

3. Confocal Laser Scanning Microscopy (CLSM)

To confirm that the red fluorescence observed in PVA-Gel + Por nanofibers was due to the presence of Por, PVA-Gel nanofibers (without Por) were used as a control. The samples were excited at 405 nm and showed no fluorescence, indicating the absence of Por. Thus, it can be concluded that the red fluorescence detected in Por-loaded PVA-Gel nanofibers was derived from the Por.

Fig. S6 CLSM image of PVA-Gel nanofibers excited at 405 nm and detected at 500-699 nm.