Supplementary Information

Construction of 3D flower like NiO/Mn₃O₄ heterojunction using Tulsi leaf extract for enhanced photodegradation of thiamethoxam pesticide and organic dyes under direct sunlight

Mandvi^a, Prit Pal Singh^a, Suhas Ballal^b, Mamta Chahar^c, Jaya Bansal^d, Ranvijay Kumar^e, Sandeep Kumar^f, Sandeep Kaushal^g ^a Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India ^bJain (Deemed to be University), Banglore, Karnataka, India ^cNIMS Institute of Engineering and Technology, NIMS University, Jaipur, Rajasthan, India ^dChandigarh Engineering College, Jhanjeri, Mohali, Punjab, India ^e University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, India ^fAkal University, Talwandi Sabo, Punjab, India ^g Regional Institute of Education, NCERT, Ajmer, Rajasthan, India

Technique and instrumentation used for studies:

FTIR spectra of the nanocomposite were recorded using Perkin Elmer RXI FTIR spectrometer. The morphological investigations of the nanocomposite were done using FESEM (Carl Zeiss Supra 55) and HRTEM (Jeol Jem 2100 Plus). The structural nature of the heterojunction was studied by X-ray diffractometer (XRD, X'Pert PRO) at $2\theta = 10-70^{\circ}$. XPS (Thermo Fisher Scientific Escalab Xi⁺) was employed to estimate the elemental composition of the metal oxides heterojunction. The adsorption parameters of metal oxides heterojunction were investigated by the Brunauer-Emmett-Teller (BET) method. Zeta-potential analysis was achieved using Zetasizer Nano-ZS90 (Malvern Inc.).

Fig. S1 a) XRD patterns of pure NiO, Mn₃O₄ and NiO/Mn₃O₄ heterojunction samples

Fig. 2S. FTIR spectra of pure NiO, Mn₃O₄ and NiO/Mn₃O₄ heterojunction samples

Fig. 3S Field-emission scanning electron microscopy images of a) NiO nanoparticles and b) Mn_3O_4 nanoparticles

Fig. 4S High resolution transmission electron microscopy images of a) NiO nanoparticles and b) Mn₃O₄ nanoparticles

Fig. S3. N2 adsorption–desorption isotherm curves of NiO/Mn₃O₄ of heterojunction (inset: pore size distributions)

Fig. S6 High resolution XPS spectra of a, b) NiO and c, d) Mn₃O₄NPs

The distinctive binding energy (eV) peaks related to Ni, O, and C in the NPs are evident in the survey spectrum (Fig. S5a). Ni $2p_{3/2}$ and Ni $2p_{1/2}$ peaks are supported by the observed Ni 2p spectra. The typical peaks of Ni²⁺ $2p_{3/2}$ and its satellite peaks have been identified at 854.1, 855.6, and 861.3 eV, each, as shown in Fig. S5b. In contrast, the Ni²⁺ $2p_{1/2}$ peak was detected at 872.6 eV, suggesting the formation of NiO structures. Similarly, the survey spectrum of Mn₃O₄ NPs revealed the presence of Mn, O and C elements in the metal oxide NPs (Fig. 5c). The 2p peak generates two potential states, $2p_{3/2}$ and $2p_{1/2}$, as a result of spin-orbit splitting of Mn (Fig. S5d). Of these, the Mn²⁺ state is associated with two peaks at 641.1 eV (Mn 2p3/2) and 652.8 eV (Mn 2p1/2), whereas the Mn⁴⁺ state is linked to the remaining peak at 642.5 eV (Mn 2p_{3/2}).

Fig. S7. VB-XPS spectra of NiO and Mn₃O₄ nanoparticles.

Further, XPS was employed for the analysis of valence band maximum (VBM) values for NiO and Mn₃O₄ NPs. From VB-XPS, valence band energy corresponding to NiO was found to be 2.75 eV and for Mn₃O₄, valence band maxima was observed to be 2.24 eV as shown in Fig. S3. From these VBM values, conduction band (CB) energy was calculated by following the equation:

$$E_{CB} = E_{VB} - E_g$$

 E_g value of NiO and Mn₃O₄ corresponds to 2.78 eV and 2.24 eV, respectively. Using the above equation, E_{CB} values obtained for NiO and Mn₃O₄ were – 0.13eV and – 0.05eV which proved to be outstanding for photocatalytic reaction.

Fig. S8 Effect of dosage on percentage adsorption of THX

Fig. S9 Zeta potential of as synthesized NiO/Mn_3O_4 of heterojunction

Fig. S11: LCMS-MS results obtained from photocatalytic degradation of THX insecticide.

Fig S12. Effect of pH on the degradation of CV and RhB dyes

Fig S13. Effect of scavengers on the degradation of organic dyes

Fig. S14 Degradation efficiency of the NiO/Mn₃O₄ heterojunction (NM-I) for TMX, CV and RhB over four successive runs

Fig. S15 XRD spectrum of NM-I photocatalyst before and after 4 successive photocatalysis cycles

Table

Table S1. The calculated values of various parameters for NiO/Mn₃O₄ heterojunction

Parameter	NiO	Mn ₃ O ₄
Eg	3.2 eV	2.2 eV
E _{CB}	-0.35 eV	-0.03 eV
E _{VB}	+2.85 eV	2.17 eV