Facile fabrication of stretchable, anti-freezing, and stable organohydrogels for strain sensing at subzero temperatures

Muhammad sher¹, Luqman Ali Shah^{1*}, Jun Fu², Hyeong-Min Yoo³, Riaz Ullah⁴, Mohamed A.

Ibrahim⁴

¹Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of

Peshawar, 25120, Pakistan

²Key Laboratory of Polymeric Composite and Functional Materials, School of Materials Science

and Engineering, Sun Yat-sen Uniersity, Guangzhou 510275, China

³School of Mechanical Engineering, Korea University of Technology and Education

(KOREATECH), Cheonan 31253, Republic of Korea

⁴Department of Pharmaceutics, College of Pharmacy, King Saud Unversity, Riyadh 11451,

Saudi Arabia

Figure S1, schematic steps of polymerization and targeted polymer internal chemistry

Figure S2 Photographs showing the stretching of hydrogels and OHGs at room temperature and at -15°C. At room temperature picture A, B, and C respectively shows the stretching of sample S6, S1, and S2. Similarly, picture a, b, and c shows the stretching of samples S6, S1, and S2 at -15°C respectively.

Figure S3 The rheological investigation of samples S0 and S6. (a) the frequency sweep test between 0.1 to 100 rad/sec, (b) the amplitude sweep study performed between 0.01 to 1000% strains at a constant frequency of 10 rad/sec.

Figure S4 Demonstration of strain sensitivity in view of LED performance towards OHGs, (a) a small piece of sample S2 attached to the two electrodes, (b) LED illumination showing the conductive nature of the OHGs.

Table S1 Comparison of the key performance parameters of the current research with those

 recently reported studies of the same type.

Hydrogel composition	Gaug e facto r	Workin g temp. range (°C)	Stretchabili ty (%)	Response/recove ry time (ms)	Conductivi ty (S/m)	References
HPMC-g- P(AN-co-AM)	-	-25 to 25	1730	-	1.54	[1]
(PACG-M) Ti3C2TX MXene	3.93	- 20 to 80	1000	500	1.34	[2]
PDMS- MXene/CNF	-	-20 to 200	-	-	10^{-8} to 10	[3]
MWCNT/CB- PDMS	8	RT	35	1200/2400	-	[4]
PAmm/PDDM A/ MA	6.9	RT	2102	80/60	0.20	[5]
PAM-QACNF- MXene	2.24	RT	1465	141/140	1.281	[6]
Poly(Am-co- LM@Ag)	10.14	-15 to 25	1200	100/80	0.45	This work

Figure S5 Multiple cycles test showing fatigue resistance over a strain of 200%.

References

- Chen, D., et al., Ultrastretchable, tough, antifreezing, and conductive cellulose hydrogel for wearable strain sensor. ACS Applied Materials & Interfaces, 2020. 12(47): p. 53247-53256.
- Li, S.-N., et al., Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2TX MXene hydrogels for wide-temperature strain sensing. Nano Energy, 2021. 90: p. 106502.

- Chen, H.Y., et al., Self-adhesive polydimethylsiloxane foam materials decorated with MXene/cellulose nanofiber interconnected network for versatile functionalities. Advanced Functional Materials, 2023. 33(48): p. 2304927.
- 4. Lee, J.H., et al., *Heterogeneous structure omnidirectional strain sensor arrays with cognitively learned neural networks*. Advanced Materials, 2023. **35**(13): p. 2208184.
- 5. Hifsa, H., et al., *Multifunctional Capabilities of Malonic Acid-Bridged Conductive Hydrogels for Wearable Electronic Devices*. ACS Applied Polymer Materials, 2024.
- 6. Ni, Q.-Y., et al., *Mechanical tough and stretchable quaternized cellulose nanofibrils/MXene conductive hydrogel for flexible strain sensor with multi-scale monitoring*. Journal of Materials Science & Technology, 2024. **191**: p. 181-191.