Supporting Information

Rational design of single-atom catalysts for efficient H₂O₂ production via a four-step strategy

Shu-Long Li^{*a,b,c*}, Xiaogui Song^{*a*}, Zuhui Zhou^{*a*}, Hongyuan Zhou^{*a*}, Liang Qiao^{*b*}*, Yong

Zhao^{a,d*}, and Li-Yong Gan^{e*}

^a Institute for Advanced Study, Chengdu University, Chengdu 610106, China

^b School of Physics, University of Electronic Science and Technology of China,

Chengdu 611700, China

- ^c Western Superconducting Technologies Co, Ltd., Xi`an 710018, China
- ^d College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
- ^e College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
- *E-mail: <u>liang.qiao@uestc.edu.cn</u> (L. Q.), <u>zhaoyong@cdu.edu.cn</u> (Y. Z.), and <u>ganly@cqu.edu.cn</u> (L.-Y. G.)

Gibbs Free Energy Computations

The electrochemical ORR reactions can be divided into $2e^-$ ORR and $4e^-$ ORR [1]. For the $4e^-$ ORR reaction, the reaction intermediates include OOH*, O*, and OH*, and the product is H₂O [2]. For the $2e^-$ ORR reactions, the only reaction intermediate is OOH* and the product is H₂O₂ [3]. The Δ G of intermediates OOH*, O*, and OH* were calculated as follows:

$$\Delta G_{00H} = G_{00H} - G_* - (2G_{H_20} - 3/2G_{H_2}) \tag{1}$$

$$\Delta G_0 = G_0 - G_* - (G_{H_2 0} - G_{H_2}) \tag{2}$$

$$\Delta G_{0H} = G_{0H} - G_* - (G_{H_20} - 1/2G_{H_2})$$
(3)

$$G_{0_2}(g) = 2G_{H_20}(l) - 2G_{H_2} + 4 \times 1.23$$
(4)

where * denotes the adsorption carrier of TM-GY. where G_{*} represents the total energy of the TM-GY, and G_{OOH}, G_O and G_{OH} denote the total energies when the intermediates OOH*, O*, and OH* are adsorbed on TM-GY, respectively. Due to inaccuracies in DFT calculations for gaseous O₂ in the high spin ground state, ${}^{G_{O_2}(g)}$ was calculated using Eq. (4), assuming equilibrium between gas-phase and liquid-phase water at room temperature reached equilibrium [4].

The 2e⁻ ORR reaction process:

$$* + 00 + H_2 0 + e^- \rightleftharpoons 00H^*$$
 (5)

$$00H^* + H_20 + e^- \rightleftharpoons H_20_2 + 0H^-$$
(6)

The 4*e*⁻ ORR reaction process:

$$* + 00 + H_20 + e^- \rightleftharpoons 00H^* + 0H^-$$
(7)

$$00H^* + H_20 + e^- \rightleftharpoons 0^* + H_20 + 0H^-$$
(8)

$$0^* + H_2 0 + e^- \rightleftharpoons 0H^* + 0H^-$$
 (9)

$$OH^* + H_2O + e^- \rightleftharpoons H_2O + OH^-$$
 (10)

Fig. S1. The H_2O_2 performance of primitive GY.

Fig. S3. The relationship between ΔG_{OOH} and ΔG_{OO} .

Fig. S4. Comparison of ΔG_{OOH} of Ni-atom, Ni-GY, GY.

Fig. S5. the configuration of TM-GY after the OOH* hydrogenation to form H_2O_2 .

TM	θ_d	E _M	R	ТМ	θ_d	E _M	R	ТМ	θ_d	E _M	R
Sc	1	1.36	1.64	Y	1	1.22	1.80	Hf	2	1.32	1.59
Ti	2	1.54	1.45	Zr	2	1.33	1.60	Та	3	1.51	1.48
V	3	1.63	1.35	Nb	4	1.59	1.48	W	4	2.36	1.41
Cr	5	1.66	1.27	Мо	5	2.16	1.40	Re	5	1.93	1.46
Mn	5	1.55	1.32	Ru	7	2.20	1.32	Os	6	2.18	1.34
Fe	6	1.83	1.27	Rh	8	2.28	1.34	Ir	7	2.20	1.36
Co	7	1.88	1.26	Pd	10	2.20	1.37	Pt	9	2.28	1.39
Ni	8	1.92	1.24	Ag	10	1.93	1.44	Au	10	2.54	1.44
Cu	10	1.90	1.28								

Table S1. The d-orbital (θ_d) , atomic electronegativity (E_M) and atom-radius (R).

Fig. S6. The scaling relationship between $\eta^{H_2O_2}$ and d electrons(θ_d) (a), the electronegativity (E_M) (b), and the atomic radius (R) (c). (d)The scaling relationship between ΔG_{OOH} and φ_3 for TM-GY.

Fig. S7. The configuration of OO* and OOH* for TM-GY, TM-B-GY, TM-N-GY, and TM-v-GY.

Fig. S8. The ΔG_{OO} for TM-NM-GY (TM = Ag, Cu, Ni, Pd and Pt; NM = B, N doping or C vacancy).

Fig. S9. The relationship between the ΔG_{OO} and the O-O bond length on TM-NM-GY.

(b) TM-B-GY

Fig. S10. The Free energy diagrams of $2e^-$ ORR for H_2O_2 product on TM-NM-GY.

(b) TM-B-GY

Fig. S11. The Free energy diagrams of 4e⁻ ORR for H₂O product on TM-NM-GY.

Fig. S12. The selectivity of TM-NM-GY by compare the overpotential of $\eta^{H_2O_2}$ and η^{H_2O} .

Fig. S13. The AIMD calculation for TM-NM-GY catalysts at 300 K from 0 to 12 ps.

	Energy	AIMD	Electrochemical	Comprehensive stability
Ni-GY	\checkmark	\checkmark	×	
Cu-GY	×	\checkmark	~	
Ag-GY	×	×	×	
Pd-GY	×	V	~	
Pt-GY	×	\checkmark	~	
Ni-B-GY	\checkmark	\checkmark	~	~
Cu-B-GY	\checkmark	\checkmark	~	~
Ag-B-GY	×	×	~	
Pd-B-GY	×	V	~	
Pt-B-GY	×	V	~	
Ni-N-GY	×	V	×	
Cu-N-GY	×	V	×	
Ag-N-GY	×	×	×	
Pd-N-GY	×	\checkmark	√	
Pt-N-GY	×	\checkmark	~	
Ni-v-GY	\checkmark	\checkmark	V	\checkmark
Cu-v-GY	\checkmark	V	~	\checkmark
Ag-v-GY	\checkmark	V	V	\checkmark
Pd-v-GY	√	√	√	√
Pt-v-GY	√	~	√	\checkmark

Fig. S14. Comprehensive evaluation of stability summary for TM-NM-GY.

	Stability	Active (η<0.6V)	Selectivity	All performance
Ni-GY	×	V	V	
Cu-GY	×	V	V	
Ag-GY	×	×	×	
Pd-GY	×	×	~	
Pt-GY	×	×	~	
Ni-B-GY	\checkmark	\checkmark	~	\checkmark
Cu-B-GY	\checkmark	×	~	
Ag-B-GY	×	\checkmark	~	
Pd-B-GY	×	V	×	
Pt-B-GY	×	\checkmark	~	
Ni-N-GY	×	\checkmark	~	
Cu-N-GY	×	V	√	
Ag-N-GY	×	V	√	
Pd-N-GY	×	×	×	
Pt-N-GY	×	×	~	
Ni-v-GY	√	×	~	
Cu-v-GY	√	~	V	V
Ag-v-GY	√	~	√	√
Pd-v-GY	√	×	V	
Pt-v-GY	√	×	V	

Fig. S15. Comprehensive evaluation summary of overall catalytic performance through activity, selectivity, and stability for TM-NM-GY.

Fig. S16. The charge variation of $2e^-$ ORR reaction for Ni-GY.

Fig. S17. The donation and back-donation models between Ni and OO or OOH.

Fig. S18. The PDOS of C, N, B and Ni for Ni-GY, Ni-N-GY and Ni-B-GY.

Fig. S19. The PDOS of O (in OOH) and Ni for Ni-GY and Ni-B-GY.

Fig. S20. Ni-GY vs Ni-B-GY: (a) The ΔG_{OO} and ΔG_{OOH} , (b) Charge density difference for OO*, (c) The COHP between the O (in OO*) and Ni.

References

- W. Zhang, Y.J. Gao, Q.J. Fang, J.K. Pan, X.C. Zhu, S.W. Deng, Z.H. Yao, G.L. Zhuang, J.G. Wang, High-performance single-atom Ni catalyst loaded graphyne for H₂O₂ green synthesis in aqueous media, J. Colloid Inter. Sci. 599 (2021) 58-67.
- [2] G. Di Liberto, L. Giordano, G. Pacchioni, Predicting the stability of single-atom catalysts in electrochemical reactions, ACS Catal. 14(1) (2023) 45-55.
- [3] Y. Cao, C. Zhao, Q. Fang, X. Zhong, G. Zhuang, S. Deng, Z. Wei, Z. Yao, J. Wang, Hydrogen peroxide electrochemical synthesis on hybrid double-atom (Pd–Cu) doped N vacancy g-C₃N₄: a novel design strategy for electrocatalyst screening, J. Mater. Chem. A 8(5) (2020) 2672-2683.
- [4] J. Liu, Catalysis by supported single metal atoms, ACS Catal. 7 (1) (2016) 34-59.