Supporting Information

Role of Intermolecular Charge Transfer towards Fluorometric Detection of Fluoride Ion with Anthrapyrazolone Derivatives

Gomathi Sivakumar^a, Anashwara Babu^a, Anubhab Das^a, Mageshwari Anandhan^a, Venkatramaiah Nutalapati^a* and Samarendra Maji^a*

^aDepartment of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu- 603203, India.

*Corresponding author E-mail: <u>nvenkat83@gmail.com/venkatrv1@srmist.edu.in</u>, <u>samarenr@srmist.edu.in</u>

1. Characterization

Fig. S2. ESI Mass spectrum of DHBBI.

Fig. S3. ¹H-NMR spectrum of DHBBI-OH, measured in DMSO-*d*₆.

¹H-NMR (500 MHz, DMSO-*d*₆) δ ppm: 13.19 (s, 1H), 7.51 – 7.40 (m, 6H), 4.97 (t, J = 5.1 Hz, 1H), 4.50 (t, J = 5.4 Hz, 2H), 3.89 (q, J = 5.6 Hz, 2H).

Fig. S4. ¹H NMR spectrum of DHBBI-2-OH, measured in DMSO-*d*₆.

¹H NMR (500 MHz, DMSO-d₆) δ ppm: 7.53 – 7.44 (m, 6H), 4.9 (t, J = 4.75 Hz, 2H), 4.490 (t, J = 5.45 Hz, 4H), 3.89 (q, J = 5.5 Hz, 4H)

Fig. S5. ESI Mass spectrum of DHBBI-OH.

Fig. S6. ESI Mass spectrum of DHBBI-2-OH.

Fig. S7. FTIR spectra of DHBBI, DHBBI-OH and DHBBI-2-OH.

Table S1. Selected Bond parameters of compounds DHBBI, DHBBI-OH, and DHBBI-2-OH from DFT studies.

Atom No.	DHBBI	DHBBI-OH	DHBBI-2-OH				
		Bond lengths (Å)					
С1-Н19, С11-Н24,	1.082	≈1.085	1.083				
C5-H21, C13-H22							
C6-H20, C12-H23	1.084	1.084	1.084				
C7-C3, C9-C8	1.432	1.432	1.430				
C8-C4, C10-C7	1.459	1.458	1.458				
C10=C9, C4-C3, C2-	1.406	1.406	1.406				
C1, C13=C14							
C3=C2, C9-C14	1.403	1.403	1.403				
C1=C6, C13-C12	1.395	1.395	1.395				
C6-C5, C12=C11	1.415	1.415	1.415				
C5=C4, C11-C10	1.393	1.393	1.393				
C7=N17, C8=N16	1.337	1.337	1.338				
C2-N18, C14-N15	1.381	1.381±2	1.382				
N16-N15, N17- N18	1.418	1.418, 1.421	1.420				
N18-H26, N15-H25	1.010	-	-				
N18-C26	-	1.461	1.460				
C26-C29	-	1.547	1.533				
С26-Н27, С26-Н28,	-		-				
С29-Н30, С29-Н31		1.099					
С25-Н26, С25-Н27,	-	-	1.092				
С33-Н34, С33-Н35							
С28-Н29, С28-Н30,	-	-	1.097				
С36-Н37, С36-Н38							
C29-O33	-	1.456	-				
O33-H32	-	0.995	-				
C28-O31, C36-O39	-	-	1.458				

O31-H32, O39-H40			1.093	
		Bond angles	1	
H25-N15-N16	117.98	117.98	-	
H26-N18-N17	117.98	-	-	
N16-C8-C4	130.93	130.92	131.17	
N17-C7-C10	130.93	131.11	131.17	
H26-N18-C2	179.94	-	-	
H25-N15-C14	179.94	179.94	-	
C26-N18-N17	-	117.96	-	
C26-C29-O32	-	110.30	-	
H33-O32-O29	-	107.56	-	
C26-N18-C2	-	130.22	-	
C25-N15-N16, C33-	-	-	118.22	
N18-N17				
C25-C28-O31, C33-	-	-	147.76	
C36-O39				
H40-O39-C36, H32-	-	-	108.13	
O31-C28				
	Dihedral angle			
H26-N18-N17-C7	179.98	-	-	
N17-C7-C10-C9,	179.99	179.92	179.92	
N16-C8-C4-C3				
C7-N17-N18-C2	0.00487	0.462	0.3461	
C8-N16-N5-C14	0.00435	0.00390	0.3462	
C4-C3-C7-C10	0.00026	0.00846	0.06836	
C1-C6-C5-C4	0.00148	0.0423	0.01242	
H22-C13-C12-H23	0.03292	0.00458	0.0133	
H19 -C1-C6-H20	0.00734	0.1154	0.0133	
N17-N18-C26-C29	-	65.79	-	
N18-C26-C29-O32	-	175.21	-	
H27-C26-C29-H31	-	60.55	-	

H31-C29-O32-H33	-	49.78	-
C26-N18-N17-C7	-	176.99	-
N16-N15-C25-C28,	-	-	53.39
N17-N18-C33-C36			
O31-C28-C25-N15,	-	-	179.98
N18-C33-C36-O39			

Table S2. Absorption spectra data obtained by TD-DFT methods for DHBBI, DHBBI-OH and DHBBI-2-OH compounds at B3LYP/6-31g* (d,p) optimized geometries.

Compounds	Electronic	E (eV)	λ (nm)	Oscillator	Composition	Major
	transition		(theo.)	strength (f)		contribution
DHBBI	$S_0 \longrightarrow S_1$	3.4391	360.51	0.3703	HOMO → LUMO	97.3
DHBBI-OH	$S_0 \longrightarrow S_1$	3.3510	369.99	0.3978	HOMO → LUMO	97.39
	$S_0 \longrightarrow S_2$	4.0108	309.13	0.0027	HOMO-3 → LUMO	5.14
					HOMO-1 → LUMO	85.54
					HOMO→ LUMO+1	4.93
	$S_0 \longrightarrow S_3$	4.3748	283.40	0.0002	HOMO-3 → LUMO	11.56
					HOMO-1 → LUMO	3.73
					HOMO → LUMO+1	80.30
DHBBI-2-OH	$S_0 \longrightarrow S_1$	3.2887	377.01	0.4325	HOMO → LUMO	97.93

Fig. S8. (a) Calculated electrostatic potential surfaces on the molecular surfaces and (b) Calculated UV-Vis spectra of DHBBI, DHBBI-OH, and DHBBI-2-OH at B3LYP/6-31g*(d,p).

DHBBI-OH

DHBBI-OH@TBAF

Fig. S9. Optimized geometry of complexation of TBAF with (a) DHBBI and (b) DHBBI-OH molecule obtained using DFT/B3LYP/6-31g* theoretical mode.

DHBBI@TBAF

Fig. S10. Calculated electrostatic potential surfaces on the molecular surfaces of complexation of TBAF, TBACN and TBAOH with DHBBI.

DHBBI-OH@TBAF

Fig. S11. Calculated electrostatic potential surfaces on the molecular surfaces of complexation of TBAF, TBACN and TBAOH with DHBBI-OH.

Fig. S12. Energy profile diagram showing variation in the HOMO and LUMO gap on complexation of TBAF with DHBBI.

Fig. S13. Energy profile diagram showing variation in the HOMO-LUMO gap on complexation of TBAF with DHBBI-OH.

Table S3. Absorption spectra data obtained by TD-DFT methods for TBAF, TBACN and TBAOH complex with DHBBI compound at B3LYP/6-31g* (d,p) optimized geometries.

Compounds	Electronic transition	E (eV)	λ (nm) (theo.)	Oscillator strength (f)	Composition	Major contribution
DHBBI	S₀ → S₁	3.4391	360.51	0.3703	HOMO → LUMO	97.3
DHBBI@ TBAF	$S_0 \longrightarrow S_2$	2.2500	551.03	0.0014	HOMO-2- > LUMO	98.40
	S₀ → S₃	2.4088	514.72	0.0063	HOMO-5 → LUMO HOMO-3 → LUMO	7.78 90.66

Table S4. Absorption spectra data obtained by TD-DFT methods for TBAF, TBACN, and TBAOH complex with DHBBI-OH compound at B3LYP/6-31g* (d,p) optimized geometries.

Compounds	Electronic	E (eV)	λ (nm)	Oscillator	Composition	Major
	transition		(theo.)	strength		contribution
				(f)		
DHBBI-OH	$S_0 \longrightarrow S_1$	3.3510	369.99	0.3978	HOMO → LUMO	97.39
	$S_0 \longrightarrow S_2$	4.0108	309.13	0.0027	HOMO-3 → LUMO	5.14
					HOMO-1 → LUMO	85.54
					HOMO → LUMO+1	4.93
	$S_0 \rightarrow S_3$	4.3748	283.40	0.0002	HOMO-3 → LUMO	11.56
					HOMO-1 → LUMO	3.73
					HOMO → LUMO+1	80.30
DHBBI-OH	$S_0 \longrightarrow S_1$	1.7201	720.81	0.0391	HOMO-8 → LUMO	8.60
@TBAF					HOMO-6 → LUMO	2.67
					HOMO-3→LUMO	17.51
					HOMO-1 → LUMO	17.42
					HOMO → LUMO	49.93
					LUMO → HOMO	2.40
	$S_0 \longrightarrow S_2$	1.9957	621.25	0.0329	HOMO-9 → LUMO	2.10
					HOMO-3 → LUMO	5.78
					HOMO-2→LUMO	19.28
					HOMO-1 → LUMO	33.24
					HOMO → LUMO	36.04
	$S_0 \longrightarrow S_3$	2.2500	551.05	0.0139	HOMO-9 → LUMO	20.04
					HOMO-8 → LUMO	2.21

		HOMO-3→LUMO	10.89
		HOMO-2 → LUMO	50.49
		HOMO-1 → LUMO	2.56
		HOMO → LUMO	9.39

Fig. S14. Calculated UV-Vis spectra of TBAF complexes of (a) DHBBI and (b) DHBBI-OH at B3LYP/6-31g*(d,p).

Fig. S15. Fluorescence quenching behaviour of DHBBI with different anionic analytes in ACN.

Table S5. Summary of the calculated K_{sv} values (M⁻¹) of different DHBBI and its derivatives with various anion analytes.

Analyte	DHBBI	DHBBI-OH	2-DHBBI-OH	DHBBI-Hex
TBAF	11.6x10 ⁴	8.82x10 ⁴	6.67 x10 ⁴	2.93× 10 ⁴
TBACN	10.2x10 ⁴	8.02x10 ⁴	7.25x10 ⁴	7.95 × 10 ⁴
ТВАОН	9.38x10 ⁴	8.30x10 ⁴	8.30x10 ⁴	6.58 × 10 ⁴
TBABr	7.94x10 ⁴	6.85x10 ⁴	8.68x10 ⁴	8.86× 10 ⁴
TBACI	8.27x10 ⁴	6.62x10 ⁴	5.27x10 ⁴	6.99× 10 ⁴
TBAI	7.99x10 ⁴	8.25x10 ⁴	2.68x10 ⁴	6.63× 10 ⁴
TBANO ₃	8.27x 10 ⁴	7.62x10 ⁴	5.52x10 ⁴	6.57× 10 ⁴
TBAHSO ₄	5.37x 10 ⁴	7.71x10 ⁴	8.23x10 ⁴	6.27× 10 ⁴
TBACIO ₄	8.97x 10 ⁴	7.71x10 ⁴	6.92x10 ⁴	4.68× 10 ⁴
TBASCN	4.86x10 ⁴	5.94 x10 ⁴	4.68x10 ⁴	6.55x10 ⁴

Fig. S16. Fluorescence quenching behaviour of DHBBI-OH with different anionic analytes in ACN.

Fig. S17. Fluorescence quenching behaviour of DHBBI-2-OH with different anionic analytes in ACN.

Fig. S18. Comparison in the Stern-Volmer plot of DHBBI-OH with different anion analytes.

Fig. S19. Comparison in the Stern-Volmer plot of DHBBI-2-OH with different anion analytes.

Fig. S20. Fluorescence quenching behaviour of DHBBI-Hex with different anionic analytes in ACN.

Fig. S21. Comparison in the Stern-Volmer plot of DHBBI-Hex with different anion analytes.

Fig. S22. Change in the emission intensity of DHBBI at different F-concentrations.

Table S6. Summary of the calculated lifetime values of different DHBBI with F⁻ anion.

Compound Name	T (ns)	χ ²
DHBBI	1.905	1.0130
DHBBI: TBAF (1:0.1)	1.895	1.0844
DHBBI: TBAF (1:0.25)	2.000	1.1242
DHBBI: TBAF (1:0.50)	1.972	1.0663
DHBBI: TBAF (1:0.75)	2.015	1.1341
DHBBI: TBAF (1:1)	2.054	1.0049
DHBBI: TBAF (1:2)	2.084	1.1719
DHBBI: TBAF (1:5)	2.358	1.0043

Table S7. Comparison of DHBBI with already reported F⁻ responsive probes

S.	Compound Name	Medium	Binding constant	Ref.
1	4-(Dimethylamino)salicylaldehyde	ACN	4.13 × 10 ⁴ M ⁻¹	1
2	2-(2-(dimethylamino)ethylamino)-3- chloronaphthalene-1,4-dione (R1) and its Zn metal chelates [Zn(R1)Cl ₂]	DMF	6.2 × 10 ⁴ M ⁻¹	2
3	2,3-di(1H-2-pyrrolyl)-7,12- dihydronaphtho[2,3-f]quinoxaline- 7,12-dione	DMSO/DCM	1.6 × 10 ⁴ M ⁻¹	3
4	10-(6-Amino-1,3-dimethyl-2,4-dioxo- 1,2,3,4-tetrahydro-pyrimidin-5-yl)- 1,3- dimethyl-1,10-dihydro-9-oxa-1,3- diaza-anthracene-2,4-dione (1)	ACN	3.15 x 10 ⁴ M ⁻¹	4
5	2-(4-Nitro-phenyl)-4,5-diphenyl-1H-i midazole	ACN:H₂O	1.42 x 10 ⁴ M ⁻¹	5
6	2,7-dihydrobenzo[1,2,3-cd:4,5,6- c'd']bis(indazole) (DHBBI)	ACN	11.6 x 10 ⁴ M ⁻¹	This present work

References

1 K. Liu, X. Zhao, Q. Liu, J. Huo, H. Fu and Y. Wang, Turn on ESPT: Novel salicylaldehyde based sensor for biological important fluoride sensing, *J. Photochem. Photobiol. B Biol.*,

2014, **138**, 75–79.

- 2 C. Parthiban and K. P. Elango, Amino-naphthoquinone and its metal chelates for selective sensing of fluoride ions, *Sens. Actuators B Chem.*, 2015, **215**, 544–552.
- 3 T. Ghosh, B. G. Maiya and M. W. Wong, Fluoride Ion receptors based on dipyrrolyl derivatives bearing electron-withdrawing groups: Synthesis, optical and electrochemical sensing, and computational studies, *J. Phys. Chem. A*, 2004, **108**, 11249–11259.
- N. Kaur and G. Jindal, "Switch on" fluorescent sensor for the detection of fluoride ions in solution and commercial tooth paste, *Spectrochim. Acta Part A Mol. Biomol. Spectrosc.*, 2019, 223, 117361.
- 5 S. Goswami and R. Chakrabarty, An imidazole-based colorimetric sensor for fluoride anion, *Eur. J. Chem.*, 2011, **2**, 410–415.