Supplementary Information (SI) for Materials Advances. This journal is © The Royal Society of Chemistry 2024

Halogen substituted bithiophene-based polycatenars with tunable

fluorescence

Mohamed Alaasar,^{a,b*} Yu Cao,^{c,d} Thorben Neumann,^e Tianyi Tan,^c Feng Liu,^c Michael Giese,^{e*}

^aInstitute of Chemistry, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany ^bDepartment of Chemistry, Faculty of Science, Cairo University, 12613 Giza, Egypt ^cShaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China ^dGuangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangzhou 510641, China ^eOrganic Chemistry, University of Duisburg Essen, Universitätsstraße 7, Essen 45117, Germany

Contents

- **1. Synthesis**
- **2. NMR Spectra**
- **3. DSC Thermograms**
- **4. XRD**
- **5. Fluorescence spectroscopy**
- **6. References**

1. Synthesis

Synthesis of the target polycatenars AXY.

General procedure. A solution of 4-*n*-hexyloxysubstituted benzoic acid **1XY** [1] (1 equivalent) in 2 mL SOCl₂ and two drops of *N,N*-dimethylformamide (DMF) was refluxed for 1 hour. The excess thionyl chloride was removed under reduced pressure. The phenol **2** [2] (1 equivalent) previously dissolved in 25 mL of dichloromethane (DCM) together with triethylamine (1.2 equivalent) and a catalytic amount of pyridine were added to the acid chloride. The mixture was refluxed for 6 hours and monitored by TLC. Extraction was performed with DCM and the organic layer was washed with water, dried over anhydrous Na₂SO₄ followed by removal of the solvent under reduced pressure. The obtained crude material was purified using column chromatography using $CHCl₃/n$ -Hexane 4:1 followed by a final step of recrystallization from ethanol/chloroform mixture (2:1) to afford the desired materials as yellow crystals.

4-(5'-(4-((3,5-bis(heptyloxy)benzoyl)oxy)phenyl)-[2,2'-bithiophen]-5-yl)phenyl-3-fluoro-4-(hexyloxy)benzoate, AFH

Yellow crystals. Yield 73.75%; ¹H NMR (400 MHz, CDCl3) δ 7.97 (dt, *J* = 8.4, 1.6 Hz, 1H), 7.91 (dd, *J* = 11.5, 2.1 Hz, 1H), 7.65 (d, *J* = 8.4 Hz, 4H, Ar-H), 7.32 (d, *J* = 2.3 Hz, 2H, Ar-H), $7.29 - 7.14$ (m, 8H, Ar-H overlapped with CHCl₃ signal), 7.04 (t, $J = 8.3$ Hz, 1H, Ar-H), 6.72 (t, $J = 2.3$ Hz, 1H, Ar-H), 4.13 (t, $J = 6.6$ Hz, 2H, Ar-OCH₂-), 4.01 (t, $J = 6.5$ Hz, 4H, Ar-OCH₂-), 1.93 – 1.74 (m, 6H, Ar-OCH₂CH₂-), 1.60 – 1.23 (m, 22H, 2 x 11 CH₂), 0.99 – 0.82 (m, 9H, 3 x CH₃). ¹³C NMR (126 MHz, CDCl₃) δ 165.16 (C=O), 164.16 (d, ⁴ J_{CF} = 2.5 Hz, C=O), 160.49 (2C, C_{ar} -O), 153.07, 152.24, 152.16, 151.10, 150.62, 150.51 (4C, including 2d, Car-O, Car-F), 142.45, 142.41, 136.98, 136.96, 132.07, 132.04, 131.19, 127.58, 127.55 (C_{ar}) ,^{*a*} 126.87 (4C, C_{ar} -H), 124.76 (2C, C_{ar}) 124.23, 124.21 (C_{ar}),^{*a* 122.41, 122.38 (2x2C, C_{ar})} -H), 121.89, 121.84, 118.07, 117.91, 113.63, 113.62 (C_{ar}),^{*a*} 108.40 (2C, C_{ar}-H), 107.40 (C_{ar}-H), 69.64 (OCH2), 68.61 (2C, OCH2), 31.93 (2C, CH2), 31.65 (CH2), 29.35 (2C, CH2), 29.19 $(C2, CH₂), 29.12 (CH₂), 26.14 (2C, CH₂), 25.70 (CH₂), 22.76 (2C, CH₂), 22.71 (CH₂), 14.23$ (2C, CH₃), 14.15 (CH₃);^{*a*} among the C_{ar} signals there are 4d due to the coupling with F; C_{ar} involves quaternary carbons as well as C_{ar} -H. ¹⁹F NMR (470 MHz, CDCl₃) δ -133.58 (dd, *J* = 11.4, 8.0 Hz). EA: calculated for $C_{54}H_{61}FO_7S_2$: C 71.65%, H 6.79%; found: C 71.58%, H 6.77%.

4-(5'-(4-((3,5-bis(heptyloxy)benzoyl)oxy)phenyl)-[2,2'-bithiophen]-5-yl)phenyl-2-fluoro-4-(hexyloxy)benzoate, AHF

Yellow crystals. Yield 74.98%; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (t, *J* = 8.6 Hz, 1H, Ar-H), $7.73 - 7.57$ (m, 4H, Ar-H), $7.36 - 7.13$ (m, 10H, Ar-H overlapped with CHCl₃ signal), 6.78 (dd, $J = 8.9$, 2.4 Hz, 1H, Ar-H), $6.75 - 6.65$ (m, 2H, Ar-H), $4.10 - 3.95$ (m, 6H, Ar-OCH₂-), $1.88 - 1.73$ (m, 6H, Ar-OCH₂CH₂-), $1.64 - 1.21$ (m, 22H, 2 x 11 CH₂), $1.00 - 0.82$ (m, 9H, 3 x 3 CH₃). ¹³C NMR (126 MHz, CDCl₃) δ 165.16 (C=O), 162.63 (d, ⁴J_{C,F} = 4.6 Hz, C=O), 160.50, (2 x OAr), 152.91, 152.25, 151.68, 151.12, 150.61, 150.42, (4C, including 2d, C_{ar}-O, Car-F), 142.52, 142.42, 137.00, 136.92, 134.01, 133.99, 132.06, 131.98, 131.20 (Car),*^a* 126.87, 126.82 (2 x 2C, Car-H), 124.76, 124.75 (C, Car), 124.21, 124.19 (Car),*^a* 122.49, 122.41 (2 x 2C, C_{ar-H}), 110.06, 110.04 (C_{ar}),^{*a*} 108.41 (2C, C_{ar-H}), 107.41, 103.15, 102.95 (C, C_{ar-H}), 69.02 $(OCH₂), 68.61 (2C, OCH₂), 31.93 (2C, CH₂), 31.65 (CH₂), 29.35 (2C, CH₂), 29.19 (2C, CH₂),$ 29.06 (CH₂), 26.14 (2C, CH₂), 25.75 (CH₂), 22.76 (2C, CH₂), 22.72 (CH₂), 14.23 (2C, CH₃), 14.15 (CH₃);^{*a*} among the C_{ar} signals there are 4d due to the coupling with F; C_{ar} involves quaternary carbons as well as C_{ar} -H. ¹⁹F NMR (470 MHz, CDCl₃) δ -104.55 (dd, *J* = 12.6, 8.5 Hz). EA: calculated for $C_{54}H_{61}FO_7S_2$: C 71.65%, H 6.79%; found: C 71.60%, H 6.75%.

4-(5'-(4-((3,5-bis(heptyloxy)benzoyl)oxy)phenyl)-[2,2'-bithiophen]-5-yl)phenyl-2,3 difluoro-4-(hexyloxy)benzoate, AFF

Yellow crystals. Yield 73.62%; ¹H NMR (500 MHz, CDCl₃) δ 7.86 (ddd, *J* = 9.7, 7.6, 2.2 Hz, 1H, Ar-H), 7.69 – 7.63 (m, 4H, Ar-H), 7.33 (d, *J* = 2.3 Hz, 2H, Ar-H), 7.29 – 7.21 (m, 7H, Ar-H overlapped with CHCl₃ signal), 7.19 (d, $J = 3.7$ Hz, 2H, Ar-H), 6.87 – 6.80 (m, 1H, Ar-H), 6.72 (t, *J* = 2.3 Hz, 1H, Ar-H), 4.15 (t, *J* = 6.6 Hz, 2H, Ar-OCH₂-), 4.02 (t, *J* = 6.5 Hz, 4H, Ar-OCH₂CH₂-), $1.93 - 1.75$ (m, 6H), $1.59 - 1.27$ (m, 22H, 2 x 11 CH₂), $0.98 - 0.85$ (m, 9H, 3 x 3 CH3). ¹³C NMR (126 MHz, CDCl3) δ 165.16 (C=O), 162.16 -162.10 (m, C=O), 160.50 $(C, C_{\text{ar}}-O), 153.12, 153.03, 151.03, 150.94, 150.62, 150.21$ (4C, including 2d, $C_{\text{ar}}-O, C_{\text{ar}}-F$) 142.46, 142.37, 137.02, 137.95, 132.19, 132.05, 131.20, 127.21, 127.18 (Car),*^a* 126.87, 126.85 (2x2C, C_{ar-H}), 124.78, 124.76 (C, C_{ar}), 124.27 (2C, C_{ar}), 124.22 (C_{ar}),^{*a*} 122.41, 122.37 (2x2C, $C_{\text{ar-H}}$), 111.40, 111.34, 108.64, 108.62 (C_{ar}) ,^{*a*} 108.41 (2C, C_{ar-H}), 107.41 (C_{ar}), 70.16 (OCH₂), 68.61 (2C, OCH₂), 31.93 (2C, CH₂), 31.61 (CH₂), 29.35 (2C, CH₂), 29.19 (2C, CH₂), 29.06 $(CH₂), 26.14 (2C, CH₂), 25.63 (CH₂), 22.76 (2C, CH₂), 22.69 (CH₂), 14.23 (2C, CH₃), 14.19$ $(CH₃)$;^{*a*} among the C_{ar} signals there are 4d due to the coupling with F; C_{ar} involves quaternary carbons as well as C_{ar}-H. ¹⁹F NMR (470 MHz, CDCl₃) δ -132.04 – -132.14 (m), -157.94 (ddd, $J = 19.6, 7.1, 2.4 \text{ Hz}$). EA: calculated for C₅₄H₆₀F₂O₇S₂: C 70.25%, H 6.55%; found: C 70.19%, H 6.54%.

4-(5'-(4-((3,5-bis(heptyloxy)benzoyl)oxy)phenyl)-[2,2'-bithiophen]-5-yl)phenyl-2 chloro-4-(hexyloxy)benzoate, AHCl

Yellow crystals. Yield 73.50%; ¹H NMR (500 MHz, CDCl3) δ 8.11 (d, *J* = 8.8 Hz, 1H, Ar-H), 7.69 – 7.63 (m, 4H, Ar-H), 7.33 (d, *J* = 2.3 Hz, 2H, Ar-H), 7.30 – 7.21 (m, 6H, Ar-H overlapped with CHCl₃ signal), 7.19 (d, $J = 3.8$ Hz, 2H, Ar-H), 7.04 (d, $J = 2.5$ Hz, 1H, Ar-H), 6.90 (dd, *J* = 8.9, 2.5 Hz, 1H, Ar-H), 6.72 (t, *J* = 2.3 Hz, 1H, Ar-H), 4.09 – 3.96 (m, 6H, Ar-OCH₂-), 1.86 – 1.75 (m, 6H, Ar-OCH₂CH₂-), 1.58 – 1.27 (m, 22H, 2 x 11 CH₂), 0.98 – 0.86 (m, 9H, 3 x 3 CH₃). ¹³C NMR (126 MHz, CDCl₃) δ 165.16, 163.49 (C=O), 162.99 (C, C_{ar}-O), 160.50 (2C, C_{ar}-O), 150.61, 150.45, 142.48, 142.43, 136.98, 136.96, 134.17, 132.04, 131.20 (Car),^a 126.87, 126.84 (2x2C, Car-H), 124.76 (2x2C, Car),*^a* 124.21 (2x2C, Car),*^a* 122.46, 122.41 (2x2C, Car-H), 120.34, 117.39, 113.34 (Car),*^a* 108.40 (2C, Car-H), 107.41(Car),*^a* 68.89 (OCH₂), 68.61 (2C, OCH₂), 31.93 (2C, CH₂), 31.65, 29.35 (2C, CH₂), 29.19 (2C, CH₂), 29.09 (CH_2) , 26.14 (2C, CH₂), 25.74 (CH₂), 22.76 (2C, CH₂), 22.72 (CH₂), 14.23 (2C, CH₃), 14.16 (CH_3) . ^{*a*}C_{ar} involves quaternary carbons as well as C_{ar}-H. EA: calculated for C₅₄H₆₁ClO₇S₂: C 70.37%, H 6.67%; found: C 70.29%, H 6.61%.

4-(5'-(4-((3,5-bis(heptyloxy)benzoyl)oxy)phenyl)-[2,2'-bithiophen]-5-yl)phenyl-2 bromo-4-(hexyloxy)benzoate, AHBr

Yellow crystals. Yield 72.99%; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, $J = 8.8$ Hz, 1H, Ar-H), 7.70 – 7.63 (m, 4H, Ar-H), 7.33 (d, *J* = 2.3 Hz, 2H, Ar-H), 7.30 – 7.21 (m, 6H, Ar-H overlapped with CHCl₃ signal), 7.19 (d, $J = 3.8$ Hz, 2H, Ar-H), 7.04 (d, $J = 2.5$ Hz, 1H, Ar-H), 6.90 (dd, *J* = 8.9, 2.5 Hz, 1H, Ar-H), 6.72 (t, *J* = 2.3 Hz, 1H, Ar-H), 4.15 – 3.92 (m, 6H, Ar-OCH₂-), 1.94 – 1.68 (m, 6H, Ar-OCH₂CH₂-), 1.66 – 1.17 (m, 22H, 2 x 11 CH₂), 1.01 – 0.81 (m, 9H, 3 x 3 CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 165.16, 163.84 (C=O), 162.76 (C, C_{ar}-O), 160.49 (2C, C_{ar}-O), 150.61, 150.45, 142.46, 142.43, 136.97, 134.09, 132.06, 131.20 (C_{ar}) ,^a 126.86, 126.85 (2x2C, C_{ar-H}), 124.76 (2C, C_{ar}),^a 124.68 (C, C_{ar}),^a 124.22 (2C, C_{ar}),^a 122.44, 122.41 (2x2C, Car-H), 122.11 (Car),*^a* 120.88 (2C, Car),*^a* 113.77 (Car),*^a* 108.40 (2C, Car- $_{\rm H}$), 107.40 (C_{ar}),^{*a*} 68.89 (OCH₂), 68.61 (2C, OCH₂), 31.93 (2C, CH₂), 31.65, 29.35 (2C, CH₂), 29.19 (2C, CH₂), 29.10 (CH₂), 26.14 (2C, CH₂), 25.74 (CH₂), 22.76 (2C, CH₂), 22.72 (CH₂), 14.23 (2C, CH₃), 14.16 (CH₃).^{*a*} C_{ar} involves quaternary carbons as well as C_{ar}-H. EA: calculated for $C_{54}H_{61}BrO_7S_2$: C 67.13%, H 6.36%; found: C 67.08%, H 6.30%.

2. NMR Spectra

Figure S1. ¹H-NMR Spectrum of AFH in CDCl₃.

Figure S2. ¹³C-NMR Spectrum of AFH in CDCl₃.

Figure S3. ¹⁹F-NMR Spectrum of **AFH** in CDCl3.

Figure S5. ¹³C-NMR Spectrum of **AHF** in CDCl3.

Figure S6. ¹⁹F-NMR Spectrum of AHF in CDCl₃.

Figure S9. ¹⁹F-NMR Spectrum of **AFF** in CDCl3.

Figure S10. ¹H-NMR Spectrum of **AHCl** in CDCl3.

Fig

ure S11. ¹³C-NMR Spectrum of **AHCl** in CDCl3.

Figure S12. ¹H-NMR Spectrum of AHBr in CDCl₃.

3. DSC Theromgrams

Figure S14. DSC heating and cooling traces for compound **AFH**.

Figure S15. DSC heating and cooling traces for compound **AHF**.

Figure S16. DSC heating and cooling traces of compound **AFF**. The inset in shows an enlarged view of the Iso-Iso₁^[*]-Cub_{bi}/*Ia*³*d* transition on cooling.

Figure S17. DSC heating and cooling traces of compound **AHCl**.

Figure S18. DSC heating and cooling traces of compound **AHBr**.

Figure S19. SAXS diffractogram of **AFF**.

Figure S20. Electron density distribution histogram of **AFH**, **AFF** and **AHBr**.

Figure S21. SAXS diffractograms of **AHCl** and **AHBr**.

Figure S22. Temperature scan of **AHF** upon heating.

Figure S23. d*V*/d*r* curve of Cub_{bi}/Ia^3d phase of **AHBr**.

(hkl)	$d_{\text{obs.}}$ -spacing (nm)	d_{cal} –spacing (nm)	intensity	phase
(211)	3.98	3.98	100.0	π
(220)	3.45	3.45	53.6	π
(321)	2.61	2.61	0.2	$\boldsymbol{0}$
(400)	2.44	2.44	3.6	$\mathbf{0}$
(420)	2.18	2.18	1.3	$\boldsymbol{0}$
(332)	2.08	2.08	1.6	$\boldsymbol{0}$
(422)	1.99	1.99	0.3	
(510)	1.91	1.91	0.03	
(440)	1.72	1.72	0.2	
(611)	1.58	1.58	0.06	
$a = 9.75$ nm				

Table S1 Experimental and calculated *d*-spacing of the observed SAXS reflection of the Cub_{bi}/ Ia^3d phase of AFH at 128 °C. All intensity values are Lorentz and multiplicity corrected.

Table S2 Experimental and calculated *d*-spacing of the observed SAXS reflection of the SmC phase of **AHF** at 128 ºC. All intensity values are Lorentz and multiplicity corrected.

(hk)	$d_{\text{obs.}}$ -spacing (nm)	d_{cal} –spacing (nm)	intensity	phase	
(10)	3.84	3.84	100.0	π	
$d = 3.84$ nm					

Table S3 Experimental and calculated *d*-spacing of the observed SAXS reflection of the $\text{Cub}_{\text{bi}}/Ia^3d$ phase of **AFF** at 147 °C. All intensity values are Lorentz and multiplicity corrected.

μ phase of ATTCT at 120 $\,$ C. All michsity values are Eurentz and mumphemy corrected.				
(hk)	d_{obs} –spacing (nm)	d_{cal} –spacing (nm)	intensity	phase
(10)	3.68	3.68	100.0	
$d = 3.68$ nm				

Table S4 Experimental and calculated *d*-spacing of the observed SAXS reflection of the SmC phase of **AHCl** at 128 ºC. All intensity values are Lorentz and multiplicity corrected.

Table S5 Experimental and calculated *d*-spacing of the observed SAXS reflection of the Cub_{bi}/ Ia^3d phase of **AHBr** at 125 °C. All intensity values are Lorentz and multiplicity corrected.

(hk)	$d_{\text{obs.}}$ -spacing (nm)	d_{cal} –spacing (nm)	intensity	phase
(211)	3.75	3.75	100.0	$\overline{0}$
(220)	3.25	3.25	51.1	$\boldsymbol{0}$
(321)	2.46	2.46	0.1	$\boldsymbol{0}$
(400)	2.30	2.30	2.2	π
(420)	2.06	2.05	0.5	π
(332)	1.96	1.96	1.9	π
(422)	1.88	1.88	0.3	
(431)/(510)	1.80	1.80	0.2/0.4	
		$a = 9.19$ nm		

Table S6 Experimental and calculated *d*-spacing of the observed SAXS reflection of the SmC phase of **AHBr** at 116 ºC. All intensity values are Lorentz and multiplicity corrected.

(hk)	$d_{\text{obs.}}$ -spacing (nm)	d_{cal} –spacing (nm)	intensity	phase	
(10)	3.51	3.51	100.0	π	
$d = 3.51$ nm					

Table S7 Structural information of $\text{Cub}_{\text{bi}}/Ia^3d$ phase of **AFH** and **AFF**.

^a Number of molecules per cell (*ncell*) is calculated by assuming the density of all compounds as 1g/cm³ .

b Length of segment between neighboring three-way junctions (L_{seg}) is calculated as 0.354 a_{cub} .

^{*c*} Twisting angle of neighboring rafts (ϕ) is calculated as 70.5/($L_{\text{geo}}/0.45$).

d Number of molecules per raft (n_{rad}) is calculated as $n_{cell}/24/(L_{see}/0.45)$.

5. Fluorescence spectroscopy

Figure S24. Normalized Emission spectra of solid-state emission of **AHF** (a, excitation wavelength 450 nm) and **AFH** (b, excitation wavelength 455 nm) at room temperature.

Figure S25. Normalized Emission spectra of solid-state emission of **AFF** (a, excitation wavelength 450 nm) and **AHCl** (b, excitation wavelength 450 nm) at room temperature.

Figure S26. Relative Emission spectra of solid-state emission at room temperature of all polycatenars with ideal excitation wavelengths respectively.

Figure S27. a) Photographs of **AFH** during heating and cooling under UV-light (395 nm). Pictures were taken every 10 °C for the heating and cooling cycle respectively. b) Normalized Emission spectra of **AFH** (excitation wavelength 450 nm) during the heating cycle. Starting with 30 °C data was collected every 10°C until reaching 200 °C. c) Normalized Emission spectra of **AFH** (excitation wavelength 450 nm) during the cooling cycle. Starting with 200 °C data was collected every 10 °C until reaching 30 °C.

Figure S28. a) Photographs of **AHF** during heating and cooling under UV-light (395 nm). Pictures were taken every 10 °C for the heating and cooling cycle respectively. b) Normalized Emission spectra of **AHF** (excitation wavelength 450 nm) during the heating cycle. Starting with 30 °C data was collected every 10°C until reaching 190 °C. c) Normalized Emission spectra of **AHF** (excitation wavelength 450 nm) during the cooling cycle. Starting with 190 °C data was collected every 10 °C until reaching 30 °C.

Figure S29. a) Photographs of **AHCl** during heating and cooling under UV-light (395 nm). Pictures were taken every 10 °C for the heating and cooling cycle respectively. b) Normalized Emission spectra of **AHCl** (excitation wavelength 450 nm) during the heating cycle. Starting with 30 °C data was collected every 10°C until reaching 140 °C. c) Normalized Emission spectra of **AHCl** (excitation wavelength 450 nm) during the cooling cycle. Starting with 140 °C data was collected every 10 °C until reaching 30 °C.

6. References

^{1.} T. Reppe, S. Poppe and C. Tschierske, *Chem. Eur. J.* 2020, **26**, 16066.

^{2.} M. Alaasar, A. F. Darweesh, C. Anders, K. Iakoubovskii and M. Yoshio, *Mater. Adv.* 2024, **5**, 561.