Supplementary Information (SI) for Materials Advances. This journal is © The Royal Society of Chemistry 2024

Supplementary Materials

Tandem NiO-Ni(OH)2/VS² Nanosheets: A Robust Photocatalyst for Hydrogen Evolution

Mona S. NourEldien^{1*}, Mostafa Y. Nassar^{1,2*}, Islam M. Ibrahim¹, Hisham M. Aly¹

¹Department of Chemistry, Faculty of Science, Benha University, Benha 13518, Egypt

²Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia

*Corresponding author.

E-mail address: mona.noureldin@fsc.bu.edu.eg

S1. Optimization study of Synthesis Parameters for VS² 1

To optimize the synthesis of VS_2 , the parameters of temperature, reaction time, and precursor molar ratio were systematically varied. The synthesis conditions were adjusted according to the following formula:

Yield or property = $f(T_s, t_s, R)$

where f represents a function. This function depends on the variables $(T_s, t_s, and R)$. T_s denotes the synthesis temperature in C , t_s represents the synthesis time in hours, and R signifies the precursor molar ratio. The exact form of (f) would be determined through experimental data that maximizes the desired material property being investigated, such as achieving a small crystallite size with a fully layered hexagonal crystal structure of $VS₂$. Detailed experimental conditions are discussed in **Fig. S1**.

Fig. S1 Schematic procedures for optimal VS_2 synthesis.

S1.1 The impact of synthesis conditions on the particle size of VS²

a) Optimization concerning reaction temperature

The XRD patternsin **Fig. S2a** illustrate the impact of temperature on the samples categorized by temperature group. Temperature is crucial in determining particle size, as summarized in **Table S2**. It influences both particle growth and crystallization. **Figure S2a** shows that the XRD patterns of samples treated at reactive temperatures of 100, 120, and 140 °C were predominantly amorphous in the range of $2\theta = 20^{\circ}$ to 80° . Notably, a distinct peak at $2\theta = 15.6^{\circ}$ is visible in these samples, corresponding to the $(0\ 0\ 1)$ lattice plane of $VS₂$ nanosheets. Upon increasing the hydrothermal temperature to 160 °C, the XRD peak intensities for VS_2 became stronger, and the XRD diffraction peaks became slightly narrower, indicating the formation of larger and more crystalline VS_2 particles and an enhancement in crystallization. This observation suggested that hydrothermal treatment promotes the phase transition of VS_2 from amorphous to crystalline. The optimal XRD results are obtained at 160 °C.

b) Optimization concerning reaction time

Figure S2b displays the XRD patterns of Time-group samples of $VS₂$ synthesized at 160 °C. Time significantly impacts particle size, as evidenced by **Table S2**. The results demonstrated that extending hydrothermal treatment results in enhanced peak intensities and a more defined (0 1 1) plane diffraction peak of VS_2 at $2\theta = 35.6^\circ$. This pattern signified an increase in the average crystalline sizes and the overall crystallinity of $VS₂$ with longer treatment times, which was attributed to the facilitation of Ostwald ripening 2 . The optimal XRD results were observed with a reaction time of 24 hours.

c) Optimization concerning molar ratio of precursors

The results from the Ratio-group samples of VS_2 are illustrated in Fig. S2c, with the particle size variation detailed in **Table S2**. At a molar ratio of 1: 3, only one peak appeared at 2θ = 15.6° corresponding to the $(0\ 0\ 1)$ lattice plane of VS₂ NSs. Increasing the molar ratio to 1: 4 revealed the presence of a peak for the $(0 1 1)$ plane, indicating $VS₂ NSs$ growth. Subsequent increases to molar ratios of 1: 5 and 1: 6 resulted in sharper and more intense peaks, with additional peaks at $2\theta = 57.1^{\circ}$, 69.4°, and 69.2° corresponding to complete hexagonal layered VS₂ NSs. It is reasonable that higher V^{4+} : S²⁻ molar ratios lead to smaller particle sizes, attributed to a reduction in reactive velocity due to decreased effective precursor concentrations ³. Although the 1:6 molar ratio resulted in a larger particle size than 1:5, it might be attributed to excessive nucleation, leading to less uniform aggregated particles, reducing the available surface area and overall efficiency⁴.

So, the optimal VS_2 sample was achieved through a hydrothermal reaction involving Na_3VO_4 and TAA at 160 °C for 20 hours, with a molar ratio of 1: 5, resulting in a fully formed VS_2 with a layered hexagonal nanosheet structure.

Fig. S2 XRD spectra of VS2 samples (a)Temperature-group, (b) Time-group, and (c) Ratiogroup.

Table S1 The average crystallite size (D) of VS₂ samples synthesized at different parameters.

Group	Parameters				
Temperature-group samples	100 °C	120 °C	140 °C	160 °C	
T_{s}	Avg. Crystallite size D (nm)				
	3.57	3.46	7.19	20.98	
Time-group samples	10 _h	15 _h	20 _h	24h	
t_{s}	Avg. Crystallite size D (nm)				
	6.06	11.41	20.73	20.98	
Ratio-group samples	1:3	1:4	1:5	1:6	
$\mathbf R$	Avg. Crystallite size D (nm)				
	7.03	12.7	20.98	24.34	

S1-2 The impact of synthesis conditions on the morphological properties of VS²

To provide a comparison of VS2 morphology, SEM images of one sample from each synthesized group are shown in **Fig. S3**. These images reveal that the nanosheet structure of VS2, particularly arranged in a nanoflower shape, is not evident in the selected non-optimized samples.

Fig. S3 Comparison of the morphology of selected as-prepared VS₂ samples via SEM analysis.

Table S2 Lattice spacing (hkl) and average crystallite size (D) of pristine and supported VS_2 samples

Table S3 Current densities and peak-to-peak (ΔE_{PP}) potential differences of pristine VS₂ and VN0.8.

Sample	$I_{d \text{ anodic}}(mA.g^{-1})$ E anodic (V)		$E_{\text{ cathodic}}$ (V)	ΔE_{PP} (V)= E_{a} - E_c
VS ₂	353	0.756	0.726	0.03
VN0.8	466	0.726	0.646	0.08

Fig. S4 TEM images for VN0.8 material; (a) before, and (b) after recycling in photocatalytic HER.

Fig. S5 XPS spectra: (a) V 2p, (b) Ni 2p, (c) S 2p, (d) O 1s, and (e) survey spectrum of VN0.8 before and after recycling in photocatalytic HER.

1. M. S. NourEldien, M. Y. Nassar, I. M. Ibrahim and H. M. Aly, *Benha j. appl. sci.* , 2024, **9**, 1- 7.

- 2. J. D. Ng, B. Lorber, J. Witz, A. Théobald-Dietrich, D. Kern and R. Giegé, *J. Cryst. Growth*, 1996, **168**, 50-62.
- 3. H. Li, H.-z. Wu and G.-x. Xiao, *Powder Technol.*, 2010, **198**, 157-166.
- 4. S.-J. Lee, H. Lee, K.-J. Jeon, H. Park, Y.-K. Park and S.-C. Jung, *Nanoscale Res. Lett.*, 2016, **11**, 1-8.