Supplementary Information (SI) for Materials Advances. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Enhancing the Cycling Performance of Manganese Oxides through Presodiation for Aqueous Zn-ion Batteries

Anjeline Williams, Prasant Kumar Nayak*

Materials Electrochemistry Research Laboratory, Department of Chemistry, SRM Institute of

Science and Technology, Kattankulathur-603203, Tamil Nadu, India

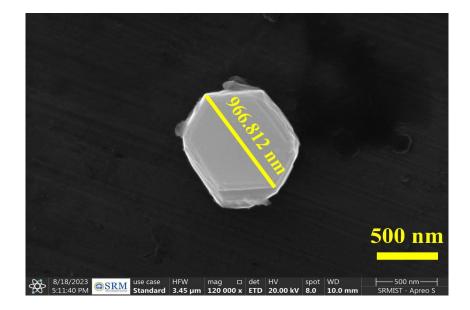


Fig. S1 HRSEM image of $Na_{0.6}MnO_2$ displaying hexagonal sheet of size 966.8 nm at the magnification of 500 nm.

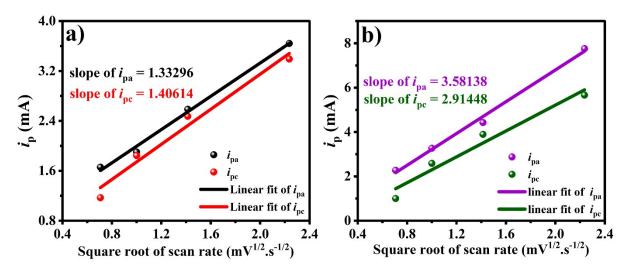


Fig. S2 (a, b) Plots of the peak current vs. square root of scan rate for $Na_{0.6}MnO_2$ and Mn_2O_3 The Zn^{2+} diffusion coefficient was calculated using Randles-Sevcik equation:

$$I_p = 2.69 * 10^5 * n^{3/2} * AC * D_{Zn^2 +}^{1/2} * v^{1/2}$$

Where I_p is the peak current (mA), n is the number of electrons transferred in the half cell, A is the electrode area (cm²), C is the concentration of Zn²⁺ ions (mol/cm³) D is the diffusion coefficient of Zn²⁺, and ν is the scan rate (mV.s⁻¹).

The diffusion coefficient $\binom{D}{Zn^{2}}$ was calculated and found to be 1.15 x 10⁻⁵ cm²/s for Na_{0.6}MnO₂ and 4.96 x 10⁻⁵ cm²/s for Mn₂O₃ for the corresponding reduction process from CV (Fig. 5 (b,e)). The $\binom{D}{Zn^{2}}$ calculated using the Randles-Sevcik equation (Fig. S2) and EIS (Fig. 11 (a, c) agree well for both the cathodes.