Supporting Information

Perylene Diimide Architectures Based Electromechanical Sensors: A Systematic

Experimental and Theoretical Framework for Comparative Analysis and Study of

Transduction Mechanism

Aditya Tiwari¹, Vivek Adepu², Rikitha S Fernandes³, Nilanjan Dey^{3*}, Parikshit Sahatiya^{2,4*} and Sayan Kanungo,^{2,4*}

¹ Department of Electronics and Communication Engineering, Amrita School of Engineering, Bengaluru- 560035, Amrita Vishwa Vidyapeetham, India.

² Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India

³ Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India

⁴ Materials Center for Sustainable Energy & Environment, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad – 500078, India

^{*2,4}*E-mail:* parikshit@hyderabad.bits-pilani.ac.in, sayan.kanungo@hyderabad.bits-pilani.ac.in, and ^{*3}*E-mail:* nilanjan@hyderabad.bits-pilani.ac.in

Experimental section

The detailed synthetic procedure and characterization data have been described below:

N,N'-bis-(2,9-pentan-3-yl)-perylene-3,4,9,10- tetracarboxydiimide (PDI-1): A mixture of perylene bisanhydride (1 g, 2.5 mmol), 3-aminopentane (2 mL), and imidazole (4 g, 58.8 mmol) was stirred at 140 °C for 12 h. Then, the reaction mixture was cooled down to room temperature and ~150 mL of water. The red solid was collected, washed with water and brine until neutral, and dried in a vacuum. The final compound **PDI-1** was obtained as red power (yield: 47 %) was obtained. IR (KBr, cm⁻¹) 3641, 3411, 2956, 1700, 1655, 1596, 1340, 1252, 1198, 958, 805, 741 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ ppm : 8.67 (d, *J* = 8.0 Hz 4H), 8.62 (d, J = 8.0 Hz, 4H), 5.11-5.03 (m, 2H), 2.32 – 2.23 (m, 4H), 2.00 – 1.90 (m, 4H), 0.93 (t, J = 7.5 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ ppm: 164.1, 134.2, 130.3, 129.4, 126.2, 122.8, 57.7, 24.9, 11.3. LCMS m/z calcd. C₃₄H₃₀N₂O₄ [M + H]⁺ 530.2, found 530.0.

N,N'-bis-(2,5-di-tert-butylphenyl)-perylene-3,4,9,10- tetracarboxydiimide (PDI-2): A mixture of perylene bisanhydride (2.0 g, 5.2 mmol) and excess 2,5-di-tert-Butylaniline (2.2 g) were taken in 15 mL of propionic acid under N₂ atmosphere, the reaction mixture was stirred and heated at 140 °C for 8 h. After being cooled to room temperature, the resulting solution was poured into ~100 mL of water. The red solid was collected, washed with water, and brine until neutral, and dried in a vacuum. The crude product was purified by silica gel column chromatography (CH₂Cl₂/PE: 1:1 in v/v). The final compound, **PDI-2,** was obtained as an orange-red solid (yield: 35 %). IR (KBr, cm⁻¹) 3659, 3438, 2959, 1704, 1669, 1511, 1347, 1254, 1198, 967, 816, 672 cm⁻¹, ¹H NMR (400 MHz, CDCl₃) δ ppm: 8.78 (d, *J* = 8.0 Hz, 4H), 8.72 (d, *J* = 8.0 Hz, 4H), 7.61 (d, *J* = 8.6 Hz, 2H), 7.48 (m, *J* = 8.6 Hz, 2H), 7.06 – 7.01 (m, 2H), 1.34 (s, 18H), 1.31 (d, *J* = 2.2 Hz, 18H). ¹³C NMR (100 MHz, CDCl₃) δ ppm: 164.3, 150.1 ,143.7, 135.0, 132.5, 131.8, 129.8, 128.8, 127.6, 126.7, 123.6, 123.4, 35.5, 34.2, 31.7. LCMS m/z calcd. C₅₂H₅₀N₂O₄ [M + H]⁺ 766.3, found 766.0.

N,N'-bis-(1'-phenylethyl)-perylene-3,4,9,10- tetracarboxydiimide (PDI-3): Perylene bisanhydride (1.5 g, 3.6 mmol), freshly distilled 1-phenylethylamine (1.16 mL, 9.6 mmol) and 30 g of imidazole were introduced under an inert (N₂) atmosphere and the system was warmed up to 180 °C and stirred

for four h. The crude product was then cooled at room temperature. After cooling, ~200 mL of 2 M HCl was added, and the system was left overnight under vigorous stirring. The resulting dark-red solid was filtered off and washed thoroughly with distilled water until the washings' pH turned neutral. The crude product was purified by silica gel column chromatography (CH₂Cl₂/ethyl acetate = 20:1 in v/v). The pure compound **PDI-3** was obtained as red needle-shaped crystals (yield: 52 %). IR (KBr, cm⁻¹) 3523, 3441, 2927, 1692, 1596, 1333, 1255, 963, 748 cm⁻¹, ¹H NMR (400 MHz, CDCl₃) δ ppm: 8.63 (d, *J* = 8.0 Hz, 4H), 8.56 (d, *J* = 8.0 Hz, 4H), 7.56 – 7.52 (m, 4H), 7.37 – 7.32 (m, 4H), 7.26 - 7.24 (m, 2H), 6.57 (q, *J* = 7.1 Hz, 2H), 2.03 (d, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 163.7, 134.6, 131.8, 128.9, 128.3, 127.9, 127.5, 127.1, 127.0, 126.4, 124.5, 124.3, 123.6, 51.6, 51.1, 50.9, 39.5, 38.8, 33.7, 27.2, 26.9, 16.8, LCMS m/z calcd. C₄₀H₂₆N₂O₄ [M + H]⁺ 598.2, found 598.0.

N,N'-bis-[2-(2,5-di-tert-butylphenyl)-9-(1-phenylethyl)]-perylene-3,4,9,10- tetracarboxydiimide (**PDI-4):** A mixture of perylene-3,4,9,10-tetracarboxylic dianhydride (1 g, 2.55 mmol), imidazole (13.5 g, 200 mmol), 1-phenylethylamine (370 mg, 3 mmol), and 2,5-Di-tert-butylaniline (637 mg, 3.1 mmol) was heated at 130 °C for 2 h. The crude product was purified by column chromatography (1:1 DCM/hexanes) to obtain pure **PDI-4** as a red solid (yield: 39%). IR (KBr, cm⁻¹) 3936, 3442, 3314, 2962, 1708, 1664, 1536, 1347, 1213, 975, 641 cm⁻¹, ¹H NMR (400 MHz, CDCl₃) δ ppm: 8.74 (d, *J* = 8.0 Hz, 2H), 8.66 – 8.63 (m, 3H), 8.62 – 8.59 (m, 3H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.55 (d, *J* = 7.1 Hz, 2H), 7.48 (m, 1H), 7.38 – 7.33 (m, 2H), 7.29 - 6.98 (m, 1H), 7.05 (d, *J* = 2.2 Hz, 1H), 6.61 – 6.54 (m, 1H), 2.04 (m, 3H), 1.34 (s, 9H), 1.30 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ ppm: 164.4, 163.4, 150.1, 140.5, 134.9, 134.5, 131.8, 131.7, 131.6, 130.8, 128.8, 127.7, 127.2, 126.3, 123.6, 123.1, 50.4, 35.5, 34.2, 31.2, 16.2. LCMS m/z calcd. C₄₆H₃₈N₂O₄ [M + H]⁺ 682.3, found 682.0

Figure S1. ¹H-NMR spectrum of PDI-1 in CDCl₃ medium.

Figure S2. ¹H-NMR spectrum of PDI-2 in CDCl₃ medium.

8.57 8.55 8.50 8.48 8.48 8.48 8.48 7.46 7.130 7.26 7.130 7.26 7.130 7.26 6.52 6.52 6.52 6.47

Figure S3. ¹H-NMR spectrum of PDI-3 in CDCl₃ medium.

Figure S4. ¹H-NMR spectrum of PDI-4 in CDCl₃ medium.

Figure S5. ¹³C-NMR spectrum of PDI-1 in CDCl₃ medium.

Figure S6. ¹³C-NMR spectrum of PDI-2 in CDCl₃ medium.

Figure S7. ¹³C-NMR spectrum of PDI-3 in CDCl₃ medium.

Figure S8. ¹³C-NMR spectrum of PDI-4 in CDCl₃ medium.

Figure S9. FTIR spectrum of PDI-1

Figure S10. FTIR spectrum of PDI-2

Figure S11. FTIR spectrum of PDI-3

Figure S12. FTIR spectrum of PDI-4

Figure S13. HRMS spectra of PDI-1

Figure S14. HRMS spectra of PDI-2

Figure S15. HRMS spectra of PDI-3

Figure S16. HRMS spectra of PDI-4

Figure S17: The fabricated PDI-based breath sensors' Response and recovery times.

Material	Substrate	Deposition	Range of	Pressure	Theoretic	Reference
		Technique	Detection	Sensitivity	al Validation using DFT	
C-PPy@MF	3D- macroporous melamine foam	ultrasonic irradiation	1-90 kPa	2 kPa ⁻¹	No	[1]
Elastic microstructured conducting polymer (EMCP) with polypyrrole interconnects	-	-	>1kPa	<0.4 kPa ⁻¹	No	[2]
Polypyrrole (PPy) with Fe ³⁺ arrays	Cellulose paper	In-situ growth with PPy vapors	>75Pa	1.09 kPa ⁻¹	No	[3]
PDMS with sodium bicarbonate	ITO coated PET	Drop casting	0.33-250 kPa	0.01 kPa ⁻¹	No	[4]
PtSe ₂	Polyimide	CVD, Photolithograp hy, followed by a Reactive Ion etching process	-	1.64 10 ⁻³ mbar ⁻	Yes	[5]
3D conductive network (Polyaniline filler with silk fibroin and poly (lactic-co- glycolic acid))	ITO coated glass	Doctor-blade coating	0-165.3 kPa	2.54 kPa ⁻¹	No	[6]
Perylene diimide (PDI-1, PDI-2, PDI-3, and PDI-4)	Cellulose paper	Vacuum filtration	1.477- 3.185 kPa	0.315, 1.266, 0.749, 2.120 kPa ⁻¹	Yes	This work

Table. S1: Comparison between the PDI-based sensor with sensors reported in the existing literature

References:

[1] Veeralingam, S., Praveen, S., Vemula, M. and Badhulika, S., 2022. One-step synthesis of carbon-doped PPy nanoparticles interspersed in 3D porous melamine foam as a high-performance piezoresistive pressure, strain, and breath sensor. *Materials Chemistry Frontiers*, *6*(5), pp.570-579.

[2] Pan, L., Chortos, A., Yu, G., Wang, Y., Isaacson, S., Allen, R., Shi, Y., Dauskardt, R. and Bao, Z., 2014. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature communications, 5(1), p.3002.

[3] Zang, X., Jiang, Y., Wang, X., Wang, X., Ji, J. and Xue, M., 2018. Highly sensitive pressure sensors based on conducting polymer-coated paper. Sensors and Actuators B: Chemical, 273, pp.1195-1201.

[4] Chen, S., Zhuo, B. and Guo, X., 2016. Large area one-step facile processing of microstructured elastomeric dielectric film for high sensitivity and durable sensing over wide pressure range. ACS applied materials & interfaces, 8(31), pp.20364-20370.

[5] Wagner, S., Yim, C., McEvoy, N., Kataria, S., Yokaribas, V., Kuc, A., Pindl, S., Fritzen, C.P., Heine, T., Duesberg, G.S. and Lemme, M.C., 2018. Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films. *Nano letters*, *18*(6), pp.3738-3745.

[6] Xu, M., Cai, H., Liu, Z., Chen, F., Chen, L., Chen, X., Cheng, X., Dai, F. and Li, Z., 2021. Breathable, Degradable Piezoresistive Skin Sensor Based on a Sandwich Structure for High-Performance Pressure Detection. *Advanced Electronic Materials*, 7(10), p.2100368.