Supplementary Information

¹Md. Raihan Siddiki, ¹Shahid Abubakar Abtahee, ²Mizanur Rahaman,

²Muhammad Rakibul Islam and ^{1*}Md. Abdullah Zubair

¹Department of Nanomaterials and Ceramic Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka-1000, Bangladesh

²Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka-1000, Bangladesh * Corresponding author email: <u>mazubair2017@gmail.com</u> (M. A. Zubair)

S1. Energy Dispersive X-ray Analysis (EDX)

JEOL

100 Analysi Buti

JEOL

Figure SF1: Typical EDX spectra of (a) pure MnO_2 (b) $MnO_2/(1\%)$ Fe₃O₄, (c) $MnO_2/(3\%)$ Fe₃O₄, (d) $MnO_2/(5\%)$ Fe₃O₄. Here the figures show only the typical spectra from the EDX point analysis for each sample, where each synthesized nanocomposite was subjected to at least 10 spectral analyses from randomly selected regions of the sample.

JEOL

o Amhridan

JEOL

Figure SF2: Variation of Mn/O atom % ratio with the addition of Fe₃O₄ nanodiamonds in MnO₂ nanoflower. The atomic ratio of Mn/O is calculated following the semiquantitative Energy Dispersive X-ray (EDX) spectrum as shown in Figure SF1. The ratio is ~ 0.5 in pristine MnO₂, indicating the stoichiometric proportion of Mn and O in this compound. However, this ratio tends to rise with the addition of Fe₃O₄ with MnO₂/ (3%) Fe₃O₄ nanocomposite exhibiting the highest ratio of ~ 1.04 among all synthesized samples. This indicates that the density of lattice oxygen vacancy defects within the crystal structure increases with the incorporation of Fe₃O₄ nanodiamond in MnO₂.

S2. Cyclic Stability

Figure SF3: Comparison between the previously reported MnO_2/Fe_3O_4 based works^{1–3} and this work. The δ - $MnO_2/(3\%)$ Fe₃O₄ nanocomposite exhibited comparable specific capacitance and % of capacitance retention in cyclic stability performance. (Measurement conditions are provided above the bar, and all data reflect the cyclic stability over 4000 cycles)

References:

- 1J. Zhu, S. Tang, H. Xie, Y. Dai and X. Meng, ACS Appl. Mater. Interfaces, 2014, 6, 17637–17646.
- 2C. Tu, X. Li, C. Lu, Q. Luo, T. Li and M. Zhu, Mater. Chem. Front., 2022, 6, 1938–1947.
- 3Z. Li, Y. Yao, Y. Zheng, T. Gao, Z. Liu and G. Zhou, *Journal of The Electrochemical Society*, 2018, **165**, E58.