Supplementary Information

Design and Characterization of Multi-Component Lamellar Materials Based on MWW-Type Zeolitic Layers and Metal Oxide Sub-domains

Cristina Esteban, Alexandra Velty*, Urbano Díaz*

Instituto de Tecnología Química, Universitat Politècnica de València, Agencia Estatal Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain

* Corresponding Author: udiaz@itq.upv.es , avelty@itq.upv.es

Figure S1. Thermogravimetric analysis (TGA). (a) As-synthesized multi-component MWW-MgCe materials obtained through method (I) at different pHs for the formation of metallic oxide sub-domains. (b) As-synthesized multi-component MWW-LHD-*in-situ* materials obtained following synthesis method (II). (c) As-synthesized multi-component MWW-LHD materials obtained following synthesis method (III).

Figure S2. Derivative curves (DTA) from thermogravimetric analysis (TGA). (a) As-synthesized multicomponent MWW-MgCe materials obtained through method (I) at different pHs for the formation of metallic oxide sub-domains. (b) As-synthesized multi-component MWW-LHD-*in-situ* materials obtained following synthesis method (II) with different LDH content. (c) As-synthesized multi-component MWW-LHD materials obtained following synthesis method (III).

Figure S3. Uv-Visible spectra of as-synthesized (left) and calcined (right) samples. (a) Multi-component MWW-MgCe materials obtained through method (I) at different pHs for the formation of metallic oxide sub-domains. (b) Multi-component MWW-LHD-*in-situ* materials obtained following synthesis method (II) with different LDH content. (c) Multi-component MWW-LHD materials obtained following synthesis method (III).

Figure S4. N₂ adsorption isotherms. (a) Multi-component MWW-MgCe materials obtained through method (I) at different pHs for the formation of metallic oxide sub-domains. (b) Multi-component MWW-LHD-*in-situ* materials obtained through method (II) with different LDH contents. (c) Multi-component MWW-LHD materials obtained following synthesis method (III).

Table S1. Ammonia desorbed quantity estimated from thermoprogrammed desorption analyses (TPD) of multi-component MWW-MgCe, MWW-LHD-*in-situ* and MWW-LHD materials, obtained following synthesis methods (I), (II) and (III), respectively.

Material	Temperature (°C) ¹	NH₃ Quantity (cm³/g)
MCM-22	361	29.3
LDH (MgAlCe)	315	91.3
MV	VW-MgCe materia	ls
MWW-MgCe-10	204	27.8
MWW-MgCe-12	360	122.4
MWW-MgCe-12.3	399	130.3
MWW-MgCe-12.5	369	136.1
MV	VW-in-situ materia	ls
MWW- LDH(MgAICe)-in- situ-30	336.4	60.8
MWW- LDH(MgAICe)-in- situ-40	287.3	69.4
MWW- LDH(MgAlCe)- <i>in-</i> <i>situ-</i> 50	328.0	77.9
M	WW-LDH material	5
MWW-LDH	349.6	93.0

¹Temperature of main desorption peak of the samples.

Material	Eg (eV) ¹
MCM-22	4.57
LDH (MgAlCe)	2.78
MWW-MgCe mater	rials
MWW-MgCe-12	2.45
MWW-LHD-in-situ ma	terials
MWW-LDH(MgAlCe)-in-situ-30	2.73
MWW-LDH(MgAlCe)-in-situ-40	2.65
MWW-LDH(MgAlCe)-in-situ-50	2.55
MWW-LHD materi	als
MWW-LDH	2.83
¹ Band gap estimated using Tauc method.	

Table S2. Bandgap (Eg) of the multi-component materials based on MWW layers and LDH (MgAICe) subdomains.