# Supplementary Information

# Ring-fluorinated heptamethine cyanine dye: Synthesis, photophysical properties, and vaporochromic properties in response to ammonia

Shouhei Ajioka,<sup>a</sup> Yuto Hagiyama,<sup>a</sup> Yuki Uehashi,<sup>a</sup> Tomohiro Agou,<sup>b</sup> Yasuhiro Kubota,<sup>a</sup> Toshiyasu Inuzuka,<sup>c</sup> and Kazumasa Funabiki<sup>\*a</sup>

<sup>a</sup> Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan.

<sup>b</sup> Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako, Hyogo 678-1297, Japan

° Division of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan

#### (Contents)

| <sup>1</sup> H, <sup>13</sup> C, <sup>19</sup> F NMR and IR for 1                | p. S2-S3   |
|----------------------------------------------------------------------------------|------------|
| <sup>1</sup> H, <sup>13</sup> C, <sup>19</sup> F NMR, IR, and HRMS for <b>2a</b> | p. S4-S6   |
| <sup>1</sup> H, <sup>13</sup> C NMR, and IR for <b>2b</b>                        | p. S7-S8   |
| <sup>1</sup> H, <sup>13</sup> C NMR, and IR for <b>3</b>                         | p. S9-S10  |
| <sup>1</sup> H, <sup>13</sup> C, <sup>19</sup> F NMR, IR, and HRMS for <b>4a</b> | p. S11-S13 |
| <sup>1</sup> H, <sup>13</sup> C, <sup>19</sup> F NMR, IR, and HRMS for <b>4b</b> | p. S14-S16 |
| <sup>1</sup> H, <sup>13</sup> C NMR, and IR for <b>5b</b>                        | p. S17-S18 |
| Fluorescence decay curves                                                        | p. S19     |
| Packings of molecules in single crystal X-ray analysis                           | p. S20-S21 |
| ORTEP diagram for <b>4a</b>                                                      | p. S22     |
| Crystal data and structure refinement for <b>4a</b>                              | p. S23     |
| ORTEP diagram for <b>4b</b>                                                      | p. S24     |
| Crystal data and structure refinement for <b>4b</b>                              | p. S25     |
| TG-DTA for <b>4a,b</b>                                                           | p. S26     |
| Cyclic voltammograms for <b>4a,b</b>                                             | p. S27     |
| Computational calculation data for <b>4a,b</b>                                   | p. S28-S31 |

### 4,5,6,7-Tetrafluoro-2,3,3-trimethyl-3*H*-indole (1)





























#### HRMS

| Elemental Composition Report                                                              |                                                                                      |                                     |                            | Page 1        |               |          |              |            |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------|----------------------------|---------------|---------------|----------|--------------|------------|
| Single Ma<br>Tolerance =<br>Element pre<br>Number of i                                    | ss Analysis<br>1000.0 PPM /<br>ediction: Off<br>sotope peaks use                     | DBE: min                            | = -1.5, max<br>= 3         | = 200.0       |               |          |              |            |
| Monoisotopic<br>2 formula(e)<br>Elements Us<br>C: 12-12 H<br>20190830p-2-<br>1: TOF MS ES | c Mass, Even Electr<br>evaluated with 1 re:<br>ed:<br>H: 12-13 N: 1-1<br>2 8 (0.284) | on lons<br>sults within<br>19F: 4-4 | imits (all resi<br>Na: 0-1 | ults (up to 1 | 000) for each | mass)    |              |            |
| 100                                                                                       |                                                                                      | 246.08                              | 92                         |               |               |          |              | 1.00e+004  |
| 100                                                                                       |                                                                                      |                                     |                            |               |               |          |              |            |
| -                                                                                         |                                                                                      |                                     |                            |               |               |          |              |            |
| %-                                                                                        |                                                                                      |                                     |                            |               |               |          |              |            |
| -                                                                                         |                                                                                      |                                     |                            |               |               |          |              |            |
|                                                                                           |                                                                                      |                                     |                            | 246.2171      | 246.3231      | 246.4028 |              | m/z        |
| 245                                                                                       | 5.900 246.000                                                                        | 246.                                | 100 24                     | 6.200         | 246.300       | 246.400  | 246.500      | 246.600    |
| Minimum:<br>Maximum:                                                                      |                                                                                      | 10.0                                | 1000.0                     | -1.5<br>200.0 |               |          |              |            |
| Mass                                                                                      | Calc. Mass                                                                           | mDa                                 | PPM                        | DBE           | i-FIT         | i-FIT    | (Norm) Formu | la         |
| 246.0892                                                                                  | 246.0906                                                                             | -1.4                                | -5.7                       | 5.5           | 53.4          | 0.0      | C12          | H12 N 19F4 |

**S**6

#### 1,2,3,3-Tetramethyl-3*H*-indol-1-ium tetrafluoroborate (2b)<sup>1</sup>



#### <sup>1</sup>H NMR



#### <sup>13</sup>C NMR



<sup>1</sup> C. Reichardt, H. -D. Engel, *Chem. Ber.* **1998**, 121, 1009-1011.

#### <sup>19</sup>F NMR









#### <sup>1</sup>H NMR





<sup>&</sup>lt;sup>2</sup> N. Y. Kang, S. J. Park, X. W. E. Ang, A. Samanta, W. H. P. Driessen, V. Ntziachristos, K. O. Vasquez, J. D. Peterson, S. W. Yun, Y. T. Chang, *Chem Commun.* **2014**, 50, 6589-6591.



2-((*E*)-2-((*E*)-2-Chloro-3-(2-((*E*)-4,5,6,7-tetrafluoro-1,3,3trimethylindolin-2-ylidene)ethylidene)cyclohex-1-en-1-yl)vinyl)-4,5,6,7-tetrafluoro-1,3,3-trimethyl-3*H*-indol-1-ium tetrafluoroborate (4a)



#### <sup>1</sup>H NMR











HRMS



2-((*E*)-2-((*E*)-2-Chloro-3-(2-((*E*)-1,3,3-trimethylindolin-2-ylidene)ethylidene)cyclohex-1-en-1-yl)vinyl)-1,3,3-trimethyl-3*H*-indol-1-ium tetrafluoroborate (4b)



#### 120 10 (9) 20 <u>0</u>% 2 Ē 61) (3 11 20 19 4.0 2 200 [3 ន្ត្រី 18 2.0 9 ahundance 8.0 7.0 6.0 5.0 4.0 3.0 1.0 ó 2.0 人 影 4, 200 V 3.624 1451 00812 00812 00812 00812 00812 00812 00812 00812 00812 X : parts





### <sup>19</sup>F NMR





HRMS







<sup>1</sup>H NMR





<sup>3</sup> J. W. Yan, J. Y. Zhu, K. X. Zhou, J. S. Wang, H. Y. Tan, Z. Y. Xu, S. B. Chen, Y. T. Lu, M. C. Cui, L. Zhang, *Chem. Commun.* **2017**, *53*, 9910-9913.



#### Fluorescence decay curves

**4a**: CH<sub>2</sub>Cl<sub>2</sub> solution ( $3 \times 10^{-6}$  M)



**4b**: CH<sub>2</sub>Cl<sub>2</sub> solution ( $3 \times 10^{-6}$  M)







**Figure S1** Packing of the molecules in X-ray diffraction structure of the ring-fluorinated HMCD **4a**: Top view of a single layer (a), top view of double layer (b), side view of a single layer (c), another side view of a single layer (d), side view of double layer (e), another side view of double layer (f), side view of the extracted blue molecules from (e) and the distances between the indolium and the methine double bond (g), side view of the extracted magenta molecules from (e) and the distances between the indolium and the methine double bond (h), side view of the extracted red molecules from (e) and the distances from (e) and the distances from (e) and the distances between the indolium and the methine double bond (h), side view of the extracted green molecules from (e) and the distances between the indolium and the methine double bond (h), side view of the extracted green molecules from (e) and the distances between the indolium and the methine double bond (h).



**Figure S2.** Packing of the molecules in X-ray diffraction structure of the HMCD **4b**: Top view (a), the extracted magenta and green molecules from (a) and the distances between indoline and methine double bond (b), extracted blue and red molecules from (a) (c), side view (d), the extracted magenta and green molecules from (d) and the distances between the indolium and the methine double bond (e), the extracted blue and red molecules from (a) and the distances between the indolium and the methine double bond (e), the extracted blue and red molecules from (a) and the distances between the indolium and the methine double bond (f).



Crystals of ring-fluorinated dye **4a** prepared by the vapor diffusion method with hexane and dichloromethane.

The X-ray Crystal Structure was collected on Rigaku Saturn 724+ CCD diffractometer with a VariMax Mo optic system.

Figure S3. ORTEP Diagram of 4a.

| Identification code                      | 4a                                    |                         |
|------------------------------------------|---------------------------------------|-------------------------|
| Empirical formula                        | C32 H28 B Cl F12 N2                   |                         |
| Formula weight                           | 714.82                                |                         |
| Temperature                              | 173(2) K                              |                         |
| Wavelength                               | 0.71073 Å                             |                         |
| Crystal system                           | Monoclinic                            |                         |
| Space group                              | $P2_1/c$                              |                         |
| Unit cell dimensions                     | a = 9.2949(3) Å                       | α=90°.                  |
|                                          | b = 27.7483(8) Å                      | β=96.464(3)°.           |
|                                          | c = 12.3186(4)  Å                     | $\gamma = 90^{\circ}$ . |
| Volume                                   | 3156.99(17) Å <sup>3</sup>            |                         |
| Ζ                                        | 4                                     |                         |
| Density (calculated)                     | 1.504 Mg/m <sup>3</sup>               |                         |
| Absorption coefficient                   | 0.219 mm <sup>-1</sup>                |                         |
| F(000)                                   | 1456                                  |                         |
| Crystal size                             | 0.180 x 0.090 x 0.080 mm <sup>3</sup> |                         |
| Theta range for data collection          | 1.818 to 25.497°                      |                         |
| Index ranges                             | -10<=h<=11, -33<=k<=33, -14<=l<=1     |                         |
| Reflections collected                    | 33500                                 |                         |
| Independent reflections                  | 5855 [R(int) = 0.0514]                | ]                       |
| Completeness to theta = $25.242^{\circ}$ | 99.6%                                 |                         |
| Refinement method                        | Full-matrix least-squar               | res on F <sup>2</sup>   |
| Data/restraints/parameters               | 5855 / 96 / 489                       |                         |
| Goodness-of-fit on F <sup>2</sup>        | 1.011                                 |                         |
| Final R indexes [I>=2sigma(I)]           | $R_1 = 0.0456, wR_2 = 0.1306$         |                         |
| Final R indexes (all data)               | $R_1 = 0.0583, wR_2 = 0.1401$         |                         |
| Extinction coefficient                   | n/a                                   |                         |
| Largest diff. peak and hole              | 0.498 and -0.441 e.Å <sup>-3</sup>    |                         |

 Table S3. Crystal Data and Structure Refinement for 4a.



Crystals of non-fluorinated **4b** prepared by the vapor diffusion method with hexane and dicloromethane. The X-ray Crystal Structure was collected on Rigaku AFC 10 (CCD: Saturn 724+) + VariMax Mo Optic.

Figure S4. ORTEP Diagram of 4b.

Table S4. Crystal Data and Structure Refinement for 4b.

| Identification code                      | 4b                                                                 |                         |
|------------------------------------------|--------------------------------------------------------------------|-------------------------|
| Empirical formula                        | C <sub>32</sub> H <sub>36</sub> B Cl F <sub>4</sub> N <sub>2</sub> |                         |
| Formula weight                           | 570.89                                                             |                         |
| Temperature                              | 173(2) K                                                           |                         |
| Wavelength                               | 0.71073 Å                                                          |                         |
| Crystal system                           | Orthorhombic                                                       |                         |
| Space group                              | Pca2 <sub>1</sub>                                                  |                         |
| Unit cell dimensions                     | a = 31.542(4) Å                                                    | α=90°.                  |
|                                          | b = 7.8263(8) Å                                                    | β= 90°.                 |
|                                          | c = 11.5946(12) Å                                                  | $\gamma = 90^{\circ}$ . |
| Volume                                   | 2862.2(6) Å <sup>3</sup>                                           |                         |
| Z                                        | 4                                                                  |                         |
| Density (calculated)                     | 1.325                                                              |                         |
| Absorption coefficient                   | 0.185 mm <sup>-1</sup>                                             |                         |
| Absorption coefficient                   | 0.185 mm <sup>-1</sup>                                             |                         |
| F(000)                                   | 1200                                                               |                         |
| Crystal size                             | 0.150 x 0.100 x 0.090 mm <sup>3</sup>                              |                         |
| Theta range for data collection          | 2.180 to 25.496°.                                                  |                         |
| Index ranges                             | -38<=h<=37, -9<=k<=9, -11<=l<=14                                   |                         |
| Reflections collected                    | 16438                                                              |                         |
| Independent reflections                  | 3973 [R(int) = 0.0524]                                             |                         |
| Completeness to theta = $25.242^{\circ}$ | 99.9 %                                                             |                         |
| Absorption correction                    | Semi-empirical from equiv                                          | valents                 |
| Max. and min. transmission               | 1.00000 and 0.89283                                                |                         |
| Refinement method                        | Full-matrix least-squares of                                       | on F <sup>2</sup>       |
| Final R indexes [I>=2sigma(I)]           | $R_1\!=\!0.0428,wR_2\!=\!0.0993$                                   |                         |
| R indexes (all data)                     | $R_1 = 0.0621, wR_2 = 0.1114$                                      | 4                       |
| Absolute structure parameter             | 0.49(9)                                                            |                         |
| Extinction coefficient                   | n/a                                                                |                         |
| Largest diff. peak and hole              | 0.198 and -0.179 e.Å-3                                             |                         |



Figure S5. TG-DTA of the NIR dyes 4a,b.

#### Electrochemical measurements of the dyes.

Electrochemical measurements of the dyes were performed in MeCN solutions  $(1.0 \times 10^{-3} \text{ M})$  containing Bu<sub>4</sub>NClO<sub>4</sub> (0.1 M). The  $E_{\text{ox}}$  values were measured using three small electrodes. A silver quasi-reference electrode, a platinum wire, and a carbon electrode were used as the reference, counter, and working electrodes, respectively. All the electrode potentials were calibrated concerning the Fc/ferrocenium redox couple. Electrochemical measurements were performed at a scan rate of 100 mV s<sup>-1</sup>. The  $E_{\text{ox}}$  value of Fc *vs*. SCE was 0.380 V.<sup>4</sup> The  $E_{\text{ox}}$  values *vs*. SCE were determined using the observed  $E_{\text{ox}}$  (V *vs*. Ag) values of the dyes in MeCN solutions as follows:

 $E_{\text{ox}}$  (V vs. SCE) = E (V vs. Ag, observed value) + 0.380 - (measured  $E_{\text{ox}}$  value of Fc for Ag in the MeCN solution).

The energy of the HOMO (eV) was obtained using the  $E_{ox}$  (V vs. SCE) values, as follows:

HOMO (eV) =  $-(E_{ox} (V vs. SCE) + 4.4)$ 

The band gap (*E*<sub>0-0</sub>) and energy of the LUMO (eV) were calculated using the  $\lambda_{onset}^{abs}$  value as follows:  $E_{0-0}$  (eV) = 1240/ $\lambda_{onset}^{abs}$  (nm)

LUMO  $(eV) = HOMO (eV) - E_{0-0} (eV)$ 



**Figure S6.** Cyclic voltammograms of the NIR dyes **4a,b** (1.0 X  $10^{-3}$  M) in dehydrated acetonitrile containing Bu<sub>4</sub>NClO<sub>4</sub> (0.1 M) as a supporting electrolyte with the scan rate of 100 mV s<sup>-1</sup>.

<sup>&</sup>lt;sup>4</sup> a) N. G. Connelly, W. E. Geiger, *Chem. Rev.* **1996**, *96*, *2*, 877-910. b) C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale, G. C. Bazan, *Adv. Mater.* **2011**, *23*, 2367-2371.

**Computational Details.** All calculations were performed using the computational chemistry software package Gaussian 16 ver. B.01<sup>5</sup> using (computational resource provided by Fujitsu PRIMERGY CX400) Super Computers at Information and Communications Headquarters in Nagoya University.

#### a) Ground State Details.

Ground state geometries of **4a,b** were computed at RB3LYP/6-31G(d,p) level of theory. At the optimized structures, no imaginary frequency was found through the frequency analysis. All coordinates are reported as XYZ Cartesian coordinates. And computed E (RB3LYP) and sum of zero-point and thermal correction energies of optimized structures are shown.

<sup>&</sup>lt;sup>5</sup> Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

## 4a E (RB3LYP) = -2604.434712 a.u. Sum of electronic and thermal Energies = -2603.852902 a.u. Imaginary Frequency = 0

Table S1. Cartesian coordinates of the optimized 4a.

|      | Coordinates (Angstroms) |           |           |  |
|------|-------------------------|-----------|-----------|--|
| Atom | Х                       | Y         | Z         |  |
| С    | -1.302587               | 0.296696  | -0.178903 |  |
| С    | -1.135813               | 1.262569  | -0.641161 |  |
| С    | -0.310731               | -0.534105 | 0.184597  |  |
| С    | -0.611245               | -1.509123 | 0.563213  |  |
| С    | -2.741576               | -0.074322 | -0.051169 |  |
| Ν    | -3.409253               | 0.81211   | 0.731417  |  |
| С    | -3.363575               | -0.06148  | -1.255068 |  |
| Н    | -2.931427               | -1.299724 | 0.485802  |  |
| Н    | 1.138025                | -0.343567 | 0.097905  |  |
| Н    | 1.78638                 | 0.920585  | 0.0353    |  |
| С    | 1.938209                | -1.50268  | 0.082948  |  |
| Н    | 3.185277                | 0.961545  | -0.096029 |  |
| С    | 3.319188                | -1.451404 | -0.049823 |  |
| Н    | 1.441513                | -2.466475 | 0.159551  |  |
| С    | 3.940482                | -0.203284 | -0.149681 |  |
| Н    | 3.676574                | 1.930065  | -0.150192 |  |
| С    | 3.903539                | -2.365136 | -0.072432 |  |
| Н    | 5.019541                | -0.135223 | -0.25276  |  |
| С    | 1.067552                | 2.114207  | 0.078235  |  |
| С    | 0.224126                | 2.083868  | 0.637484  |  |
| С    | 1.631186                | 2.925078  | 0.29843   |  |
| С    | 3.8614237               | 0.7802288 | 0.1389195 |  |
| С    | 4.1411835               | 0.8452704 | 0.1495673 |  |
| С    | 4.4209433               | 0.9103119 | 0.1602151 |  |
| Ν    | 4.7007031               | 0.9753535 | 0.1708629 |  |
| С    | 4.9804629               | 1.0403951 | 0.1815107 |  |
| Н    | 5.2602227               | 1.1054367 | 0.1921585 |  |
| Н    | 5.5399825               | 1.1704783 | 0.2028063 |  |
| Н    | 5.8197423               | 1.2355198 | 0.2134541 |  |

| С  | 6.0995021 | 1.3005614 | 0.2241019 |
|----|-----------|-----------|-----------|
| С  | 6.3792619 | 1.365603  | 0.2347498 |
| С  | 6.6590217 | 1.4306446 | 0.2453976 |
| Н  | 6.9387815 | 1.4956861 | 0.2560454 |
| Н  | 7.2185413 | 1.5607277 | 0.2666932 |
| С  | 7.4983011 | 1.6257693 | 0.277341  |
| С  | 7.7780609 | 1.6908109 | 0.2879888 |
| Н  | 8.0578207 | 1.7558525 | 0.2986366 |
| Н  | 8.3375804 | 1.820894  | 0.3092844 |
| С  | 8.6173402 | 1.8859356 | 0.3199323 |
| Н  | 8.8971    | 1.9509772 | 0.3305801 |
| Н  | 9.1768598 | 2.0160188 | 0.3412279 |
| С  | 9.4566196 | 2.0810603 | 0.3518757 |
| Cl | 9.7363794 | 2.1461019 | 0.3625235 |
| С  | 10.016139 | 2.2111435 | 0.3731713 |
| С  | 10.295899 | 2.2761851 | 0.3838191 |
| С  | 10.575659 | 2.3412267 | 0.3944669 |
| Н  | 10.855419 | 2.4062682 | 0.4051147 |
| Н  | 11.135178 | 2.4713098 | 0.4157626 |
| Н  | 11.414938 | 2.5363514 | 0.4264104 |
| С  | 11.694698 | 2.601393  | 0.4370582 |
| Н  | 11.974458 | 2.6664345 | 0.447706  |
| Н  | 12.254218 | 2.7314761 | 0.4583538 |
| Н  | 12.533977 | 2.7965177 | 0.4690016 |
| С  | 12.813737 | 2.8615593 | 0.4796494 |
| Н  | 13.093497 | 2.9266009 | 0.4902972 |
| Н  | 13.373257 | 2.9916424 | 0.500945  |
| Н  | 13.653017 | 3.056684  | 0.5115929 |
| С  | 13.932776 | 3.1217256 | 0.5222407 |
| Н  | 14.212536 | 3.1867672 | 0.5328885 |
| Н  | 14.492296 | 3.2518087 | 0.5435363 |
| Н  | 14.772056 | 3.3168503 | 0.5541841 |

| С | 15.051816 | 3.3818919 | 0.5648319 |
|---|-----------|-----------|-----------|
| С | 15.331575 | 3.4469335 | 0.5754797 |
| F | 15.611335 | 3.5119751 | 0.5861275 |
| F | 15.891095 | 3.5770166 | 0.5967754 |
| F | 16.170855 | 3.6420582 | 0.6074232 |
| F | 16.450615 | 3.7070998 | 0.618071  |

| F | 16.730374 | 3.7721414 | 0.6287188 |
|---|-----------|-----------|-----------|
| F | 17.010134 | 3.8371829 | 0.6393666 |
| F | 17.289894 | 3.9022245 | 0.6500144 |
| F | 17.569654 | 3.9672661 | 0.6606622 |

### <u>4b</u>

E (RB3LYP) = -1810.652960 a.u.

Sum of electronic and thermal Energies = -1810.013174 a.u.

Imaginary Frequency = 0

| Table S2. Cartesian coordinates of the opt | timized 4b |
|--------------------------------------------|------------|
|--------------------------------------------|------------|

|      | Coordinates (Angstroms) |           |           |  |
|------|-------------------------|-----------|-----------|--|
| Atom | Х                       | Y         | Ζ         |  |
| С    | -1.302587               | 0.296696  | -0.178903 |  |
| С    | -1.135813               | 1.262569  | -0.641161 |  |
| С    | -0.310731               | -0.534105 | 0.184597  |  |
| С    | -0.611245               | -1.509123 | 0.563213  |  |
| С    | -2.741576               | -0.074322 | -0.051169 |  |
| Ν    | -3.409253               | 0.81211   | 0.731417  |  |
| С    | -3.363575               | -0.06148  | -1.255068 |  |
| Н    | -2.931427               | -1.299724 | 0.485802  |  |
| Н    | 1.138025                | -0.343567 | 0.097905  |  |
| Н    | 1.78638                 | 0.920585  | 0.0353    |  |
| С    | 1.938209                | -1.50268  | 0.082948  |  |
| Н    | 3.185277                | 0.961545  | -0.096029 |  |
| С    | 3.319188                | -1.451404 | -0.049823 |  |
| Н    | 1.441513                | -2.466475 | 0.159551  |  |
| С    | 3.940482                | -0.203284 | -0.149681 |  |
| Н    | 3.676574                | 1.930065  | -0.150192 |  |
| С    | 3.903539                | -2.365136 | -0.072432 |  |
| Н    | 5.019541                | -0.135223 | -0.25276  |  |
| С    | 1.067552                | 2.114207  | 0.078235  |  |
| С    | 0.224126                | 2.083868  | 0.637484  |  |
| С    | 1.631186                | 2.925078  | 0.29843   |  |

| С  | 3.8614237 | 0.7802288 | 0.1389195 |
|----|-----------|-----------|-----------|
| С  | 4.1411835 | 0.8452704 | 0.1495673 |
| С  | 4.4209433 | 0.9103119 | 0.1602151 |
| Ν  | 4.7007031 | 0.9753535 | 0.1708629 |
| С  | 4.9804629 | 1.0403951 | 0.1815107 |
| Н  | 5.2602227 | 1.1054367 | 0.1921585 |
| Н  | 5.5399825 | 1.1704783 | 0.2028063 |
| Н  | 5.8197423 | 1.2355198 | 0.2134541 |
| С  | 6.0995021 | 1.3005614 | 0.2241019 |
| С  | 6.3792619 | 1.365603  | 0.2347498 |
| С  | 6.6590217 | 1.4306446 | 0.2453976 |
| Н  | 6.9387815 | 1.4956861 | 0.2560454 |
| Н  | 7.2185413 | 1.5607277 | 0.2666932 |
| С  | 7.4983011 | 1.6257693 | 0.277341  |
| С  | 7.7780609 | 1.6908109 | 0.2879888 |
| Н  | 8.0578207 | 1.7558525 | 0.2986366 |
| Н  | 8.3375804 | 1.820894  | 0.3092844 |
| С  | 8.6173402 | 1.8859356 | 0.3199323 |
| Н  | 8.8971    | 1.9509772 | 0.3305801 |
| Н  | 9.1768598 | 2.0160188 | 0.3412279 |
| С  | 9.4566196 | 2.0810603 | 0.3518757 |
| Cl | 9.7363794 | 2.1461019 | 0.3625235 |
| С  | 10.016139 | 2.2111435 | 0.3731713 |
| С  | 10.295899 | 2.2761851 | 0.3838191 |

| С | 10.575659 | 2.3412267 | 0.3944669 |
|---|-----------|-----------|-----------|
| Н | 10.855419 | 2.4062682 | 0.4051147 |
| Н | 11.135178 | 2.4713098 | 0.4157626 |
| Н | 11.414938 | 2.5363514 | 0.4264104 |
| С | 11.694698 | 2.601393  | 0.4370582 |
| Н | 11.974458 | 2.6664345 | 0.447706  |
| Н | 12.254218 | 2.7314761 | 0.4583538 |
| Н | 12.533977 | 2.7965177 | 0.4690016 |
| С | 12.813737 | 2.8615593 | 0.4796494 |
| Н | 13.093497 | 2.9266009 | 0.4902972 |
| Н | 13.373257 | 2.9916424 | 0.500945  |
| Н | 13.653017 | 3.056684  | 0.5115929 |
| С | 13.932776 | 3.1217256 | 0.5222407 |
| Н | 14.212536 | 3.1867672 | 0.5328885 |

| Η | 14.492296 | 3.2518087 | 0.5435363 |
|---|-----------|-----------|-----------|
| Н | 14.772056 | 3.3168503 | 0.5541841 |
| С | 15.051816 | 3.3818919 | 0.5648319 |
| С | 15.331575 | 3.4469335 | 0.5754797 |
| Н | 15.611335 | 3.5119751 | 0.5861275 |
| Н | 15.891095 | 3.5770166 | 0.5967754 |
| Н | 16.170855 | 3.6420582 | 0.6074232 |
| Н | 16.450615 | 3.7070998 | 0.618071  |
| Н | 16.730374 | 3.7721414 | 0.6287188 |
| Н | 17.010134 | 3.8371829 | 0.6393666 |
| Н | 17.289894 | 3.9022245 | 0.6500144 |
| Н | 17.569654 | 3.9672661 | 0.6606622 |
|   |           |           |           |