Supplementary Information

Self-Assembling PEGylated Mannolipids for Liposomal Drug Encapsulation of Natural Products

Self-Assembling PEGylated Mannolipids for Liposomal Drug Encapsulation of Natural Products

Leila Mousavifar,^{a,¶} Mukul R. Gupta,^{a,¶} Madleen Rivat,^a Aly El Riz,^a Abdelkrim Azzouz,^a Jordan D. Lewicky,^b Alexandrine L. Martel,^b Hoang-Thanh Le,^{b,c,d} René Roy^{a,*}

^a Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec, Canada, H3C 3P8

^b Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON, Canada, P3E 2H2

^c Medicinal Sciences Division, NOSM University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada.

^d School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada.

[¶] These authors contributed equally.

TABLE OF CONTENTS

NMR Spectra of synthesized compounds:	2-17
Critical Micelle Concentration (CMC):	18-20

NMR Spectra of synthesized compounds:

Figure 2. ¹³C NMR (75 MHz, DMSO-d₆) of compound 2

Figure 3. ¹H NMR (300 MHz, CDCl₃) of compound $\bf{3}$

Figure 4. ¹³C-NMR (75 MHz, DMSO-d₆) of compound 3

Figure 6. ¹³C-NMR (300 MHz, CDCl₃) of compound 4

Figure 7, 8. ¹H-NMR and ¹³C-NMR (300 MHz, CDCl₃) of compound 5

Figure 9, 10. ¹H-NMR and ¹³C-NMR (300 MHz, CDCl₃) of compound 6

Figure 11, 12. ¹H-NMR and ¹³C-NMR (300 MHz, CDCl₃) of compound 7

Figure 13, 14. ¹H-NMR and ¹³C-NMR (300 MHz, CDCl₃) of compound 8

Figure 16. ¹³C-NMR (300 MHz, CDCl₃) of compound 10

Figure 18. ¹³C-NMR (300 MHz, CDCl₃) of compound 12

Figure 19. ¹H-NMR (300 MHz, CDCl₃) of compound 13

Figure 20. ¹³C-NMR (300 MHz, CDCl₃) of compound 13

Figure 22. ¹C-NMR (75 MHz, CDCl₃) of compound 14

Figure 23. ¹H-NMR (600 MHz, CDCl₃) of compound 15

Figure 24. ¹³C-NMR (75 MHz, CDCl₃) of compound 15

Figure 25. ¹H NMR (600 MHz, CDCl₃) of compound 16

Figure 26. ¹³C-NMR (75 MHz, CDCl₃) of compound 16

Figure 28. ¹³C NMR (300 MHz, CDCl₃) of compound 17

Figure 29. 2D NMR-COSY ¹H-¹H of compound 17

Figure 30. DEPT-135 NMR of compound 17

Figure 31. ¹H NMR (600 MHz, CDCl₃) of compound 18

Figure 33. ¹³C NMR (300 MHz, CDCl₃) of compound 18

Figure 34. ¹H NMR (600 MHz, CDCl₃) of compound 19

Figure 35. ¹³C NMR (75 MHz, CDCl₃) of compound 19

Critical Micelle Concentration (CMC):

CMCs were determined using a Malvern Zetasizer Ultra (MAL1301351) (Malvern Instruments Limited, U.K.) equipped with a 4 mW He–Ne laser operating at a wavelength of 633nm. Scattered light was detected at an angle of 173° , an optical arrangement known as non-invasive back scatter (NIBS) optic arrangement that maximizes the detection of scattered light while maintaining signal quality. Measurements were carried out in a (DTS0012) polystyrene latex cell at 25 °C. A series of solutions ranging from 5 x 10^{-4} to 0.044 x 10^{-5} mol/L was prepared from an aqueous stock solution prepared at initial concentration of 1 mg/mL of compound **17-19** in ethanol followed by 2-fold dilution in distilled water. Data processing was carried out with a computer attached to the instrument. The measurements were repeated three times in order to check their reproducibility.¹

The CMC values for mannolipids 17-19 were 1.76x 10⁻⁶, 3.87x 10⁻⁶, and 3.86x 10⁻⁶ mole/L, respectively.

References

1. Önder Topel, Burçin Acar Çakır, Leyla Budama, Numan Hoda. Determination of critical micelle concentration of polybutadiene-block-poly(ethyleneoxide) diblock copolymer by fluorescence spectroscopy and dynamic light scattering. *J. Molec. Liq.*, **2013**, *177*, 40–43.

Entry	Concentration (mol/L)	Concentration (mol/L) x10 ⁻⁵	Intensity per kcps
1.	0.044 x 10 ⁻⁵	0.044	4.83
2.	0.088 x 10 ⁻⁵	0.088	4.84
3.	0.098 x 10 ⁻⁵	0.098	4.84
4.	0.110 x 10 ⁻⁵	0.011	4.83
5.	0.126 x 10 ⁻⁵	0.126	4.84
6.	0.147 x 10 ⁻⁵	0.147	4.84
7.	0.176 x 10 ⁻⁵	0.176	4.91
8.	0.220 x 10 ⁻⁵	0.220	5.11
9.	0.441 x 10 ⁻⁵	0.441	8.43
10.	2.23 x 10 ⁻⁵	2.23	35.7
11.	0.455 x 10 ⁻⁴	4.55	73.1
12.	0.945 x 10 ⁻⁴	9.45	88.8
13.	1.47 x 10 ⁻⁴	14.7	119.3
14.	2.04 x 10 ⁻⁴	20.4	131.1
15.	2.65 x 10 ⁻⁴	26.5	143.6
16.	3.32 x 10 ⁻⁴	33.2	159.0
17.	4.06 x 10 ⁻⁴	40.6	171.1
18.	4.86 x 10 ⁻⁴	48.6	207.3
19.	5.74 x 10 ⁻⁴	57.4	219.0

Table 1. Scattered intensity (kcps) as a function of mannolipid 17 (C12) concentration (mol/L).

Table 2. Scattered intensity (kcps) as a function of mannolipid 18 (C14) concentration (mol/L).

Entry	Concentration (mol/L)	Concentration (mol/L) x 10 ⁻⁵	Intensity per kcps
1.	0.0387 x 10 ⁻⁵	0.0387	5.33
2.	0.0774 x 10 ⁻⁵	0.0774	5.34
3.	0.0860 x 10 ⁻⁵	0.0860	5.35
4.	0.0968 x 10 ⁻⁵	0.0968	5.33
5.	0.11 0 x 10 ⁻⁵	0.110	5.34
6.	0.129 x 10 ⁻⁵	0.129	5.34
7.	0.154 x 10 ⁻⁵	0.154	5.33
8.	0.193 x 10 ⁻⁵	0.193	5.35
9.	0.387 x 10 ⁻⁵	0.387	7.37
10.	1.95 x 10 ⁻⁵	1.95	35.6
11.	0.400 x 10 ⁻⁴	4.00	50.6
12.	0.829 x 10 ⁻⁴	8.29	69.7
13.	1.29 x 10 ⁻⁴	12.9	115.8
14.	1.79 x 10 ⁻⁴	17.9	140.7
15.	2.22 x 10 ⁻⁴	22.2	164.7
16.	2.92 x 10 ⁻⁴	29.2	206.4
17.	3.56 x 10 ⁻⁴	35.6	285.1
18.	4.24 x 10 ⁻⁴	42.4	300.5
19.	5.04 x 10 ⁻⁴	50.4	317.3

Entry	Concentration (mol/L)	Concentration (mol/L) x 10 ⁻⁵	Intensity
			per kcps
1.	0.0386 x 10 ⁻⁵	0.0386	5.54
2.	0.0772 x 10 ⁻⁵	0.0772	5.55
3.	0.0857 x 10 ⁻⁵	0.0857	5.55
4.	0.0965 x 10 ⁻⁵	0.0965	5.55
5.	0.1102 x 10 ⁻⁵	0.1102	5.55
6.	0.128 x 10 ⁻⁵	0.128	5.56
7.	0.154 x 10 ⁻⁵	0.154	5.57
8.	0.193 x 10 ⁻⁵	0.193	5.57
9.	0.386 x 10 ⁻⁵	0.386	7.93
10.	1.96 x 10 ⁻⁵	1.96	34.6
11.	0.400 x 10 ⁻⁴	4.00	51.6
12.	0.826 x 10 ⁻⁴	8.26	70.7
13.	1.29 x 10 ⁻⁴	12.9	117.9
14.	1.78 x 10 ⁻⁴	17.8	151.0
15.	2.32 x 10 ⁻⁴	23.2	168.6
16.	2.91 x 10 ⁻⁴	29.1	209.3
17.	3.55 x 10 ⁻⁴	35.5	265.2
18.	4.25 x 10 ⁻⁴	42.5	298.4
19.	5.02 x 10 ⁻⁴	50.2	328.4

Table 3. Scattered intensity (kcps) as a function of mannolipid 19 (C16) concentration (mol/L).

