SUPPLEMENTARY INFORMATION

for

Magnetoelastic coupling in the stretched diamond lattice of TbTaO₄

Xiaotian Zhang,*a Nicola D. Kelly,ab Denis Sheptyakov, Cheng Liu, Shiyu Deng,ad

Siddharth S. Saxena*a and Siân E. Dutton *a

^a Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom.

^b Department of Chemistry, University of Oxford, Mansfield Rd, Oxford OX1 3TA, United Kingdom.

^c Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut (PSI), Forschungsstrasse 111, 5232 Villigen PSI, Switzerland.

^d Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, 38000 Grenoble, France.

Fig. S1 Heat capacity data for *M*-TbTaO₄. Blue dots: total heat capacity (after subtraction of the Ag contribution from the raw data). Red line: Estimated lattice contribution using the Debye model with Θ_d =370 K¹. Green dots: magnetic contribution, $C_{mag}=C_{total}-C_{lattice}$.

Unit cell	
Space group	<i>I2/a</i>
<i>a</i> / Å	5.38264(15)
<i>b</i> / Å	11.0182(3)
<i>c</i> / Å	5.06692(13)
$eta /^{\circ}$	95.6844(14)
Volume/ Å ³	299.025(14)
<i>R_{wp}</i> /%	7.21
χ2	2.10
Atomic positions	
yTb	0.6180 (3)
уТа	0.1502 (2)
xO1	0.090
yO1	0.461
zOl	0.252
xO2	-0.003
yO2	0.717
zO2	0.290

Table S1: Refined Lattice parameters and atomic positions of M-TbTaO₄ from powder X-ray diffraction at room temperature. The O atomic positions were fixed at value from previous neutron diffraction data^{2, 3}. Both Tb³⁺ and Ta⁵⁺ ions lie on (0.25, y, 0) sites.

Fig. S2 (a-e) Refined PND data of *M*-TbTaO4 collected at 1.6 K with 0.25 T, 0.50 T, 1 T, 3 T and 6 T. Red dots, experimental data; black line, calculated intensities; green line, difference pattern; tick marks, nuclear (blue), magnetic (pink) Bragg reflection positions.

Fig. S3 (a-e) Refined PND data of M-TbTaO₄ collected at 20.0 K with 0.25 T, 0.50 T, 1 T, 3 T and 6 T. Red dots, experimental data; black line, calculated intensities; green line, difference pattern; tick marks, nuclear (blue), magnetic (pink) Bragg reflection positions.

Fig. S4 Evolution of the Tb³⁺ lattice-coordinate magnetic moments along x, y and z axes as a function of magnetic field at 20.0 K from powder neutron diffraction (PND) data.

Fig. S5 Evolution of the Tb³⁺ lattice-coordinate magnetic moments along x, y and z axes as a function of magnetic field at 1.6 K from powder neutron diffraction (PND) data. The magnetic structure is modelled with a mixing of two magnetic space group. The phase fractions are fixed and identical to each other, while the magnetic moments are refined independently.

Fig. S7 Refined atomic positions of *M*-TbTaO₄ at 1.6 K and 20K as a function of magnetic field. Obtained from Rietveld refinement of powder neutron diffraction (PND) data collected on HRPT, PSI. λ = 2.45 Å.

Fig. S8 Refined interatomic distances of *M*-TbTaO₄ at 1.6 K and 20K as a function of magnetic field. Obtained from Rietveld refinement of powder neutron diffraction (PND) data collected on HRPT, PSI. λ = 2.45 Å.

Fig. S9 Refined bond angles of *M*-TbTaO₄ at 1.6 K and 20K as a function of magnetic field. Obtained from Rietveld refinement of powder neutron diffraction (PND) data collected on HRPT, PSI. λ = 2.45 Å.

Reference

- 1. E. Gopal, *Specific heats at low temperatures*, Springer Science & Business Media, 2012.
- 2. N. D. Kelly, L. Yuan, R. L. Pearson, E. Suard, I. P. Orench and S. E. Dutton, *Phys Rev Mater*, 2022, **6**, 044410.
- 3. N. D. Kelly, C. V. Colin, S. E. Dutton, V. Nassif, I. P. Orench and E. Suard, *Institut Laue-Langevin*, 2021, DOI: 10.5291/ILL-DATA.5-31-2854.