Supporting Information

Orthogonal effect on Pyrene-Porphyrin conjugates towards the detection of Volatile Organic Compounds under UV and Visible light illumination through Surface Photovoltage

Prasanth Palanisamy^a, Mageshwari Anandan^a, Sheethal Sasi^b, Arbacheena Bora^b, Sarath Kumar Chedharla Balaji^c, Rence P Reji^c, Yoshiyuki Kawazoe^{d,e}, Kommineni Kalyani^f, Surya Velappa Jayaraman^{c,d*}, Yuvaraj Sivalingam^{b,e} and Venkatramaiah Nutalapati^{a*}

^a Functional Materials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India.

^b Laboratory of Sensors, Energy and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203 Tamil Nadu, India.

^c Novel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203 Tamil Nadu, India.

^{*d*} New Industry Creation Hatchery Centre (NICHe), Tohoku University, Aoba-ku, Sendai 980-8579, Miyagi, Japan.

^e Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.

^f Department of Chemistry, RVR&JC College of Engineering, Guntur, Andhra Pradesh 522019, India

To whom correspondence should be addressed Dr. Venkatramaiah Nutalapati, E-mail: <u>nvenkat83@gmail.com/venkatrv1@srmist.edu.in</u> Dr. Surya Velappa Jayaraman, Email: <u>suryaj@srmist.edu.in</u>.

Content

- 1. Structural Characterization
- 2. Photophysical properties
- 3. SKP Measurements
- 4. DFT

1. Structural Characterization

Fig. S1 Stacked FT-IR spectra of H₂PyP and ZnPyP.

----1.96

Fig. S2 ¹H NMR (300 MHz) of H₂PyP in CDCl₃.

Fig. S3 ¹³C NMR (75 MHz) of H₂PyP in CDCl₃.

Fig. S4 ¹H NMR (300 MHz) of ZnPyP in CDCl₃.

Fig. S6 The ESI-MS of H₂PyP.

Fig. S7 The ESI-MS of ZnPyP.

2. Photophysical properties

Fig. S8 Absorption spectra of H_2PyP and ZnPyP (a) in chloroform solution. Fluorescence Emission spectra of (b, c) H_2PyP and ZnPyP, lifetime decay profile of (d) H_2PyP and ZnPyP in solution.

Fig. S9 UV-visible and emission spectrum of solution and thin film H_2PyP and ZnPyP comparison studies.

3. SKP Measurements

Fig. S10 Surface photovoltage changes of H₂PyP and ZnPyP under visible light illumination under various VOC media.

Table S1. The η values of H₂PyP and ZnPyP under visible light illumination for various VOC atmospheres

η	Acetone	Ethanol	1-hexanol	Acetonitrile	Nonanal	Triethylamine
ZnPyP	-7.218	-4.90663	-10.098	-2.60796	-8.935	-2.617
H ₂ PyP	-0.5246	-0.79701	-5.0918	-2.22788	-4.55	-1.67582

Table. S2 Various pyrene and porphyrin derivatives have been employed previously for VOC detection

Sl	Material	VOCs	Reference
No.			
1.	H ₂ TPPSH,	Triethylamine	1
	CoTPPSH	-	
2.	Pyrene Tetratopic	Ethanol	2
	Ligands Layered	(alcohol) and	
	on ZnO Nanorods	n-hexane	
		(alkane)	
3	Porphyrin-	Triethylamine	3
	Functionalized		
	ZnO Nanorods		
4	Pyrene Coated	Triethylamine	http://dx.doi.org/
	ZnO Nanorods		10.5162/IMCS20
			18/P2NG.20
5	triphenylamine	Nonanal	4

	derivatives functionalized		
	zinc oxide nanorods		
6	multi-walled carbon nanotubes coated with pyrene based organic molecules	Triethylamine	5
7	porphyrin functionalized boron doped diamond thin films	Triethylamine	6
8	Triphenylamine- porphyrin conjugates as antenna modular systems	1-hexanol	7
9	Porphyrinoid- Functionalized ZnO Nanoflowers	Benzylamine	8

Fig. S11 Raster scan images on dark and UV light illumination of (a, c, e, g, i) H₂PyP and (b, d, f, h, j) ZnPyP under VOC exposure.

Fig. S12 Raster scan images on dark and Visible light illumination of (a, c, e, g, i) H₂PyP and (b, d, f, h, j) ZnPyP under VOC exposure.

4. DFT

Fig. S13 Optimised structures of (a) EtOH, (b) Acetone, (c) ACN, (d) 1-Hexanol, (e) Nonanal, and (f) TEA

Table 55. details on the adsorption energy of VOCs with H_2F_3	Table S3.	details on the	ne adsorption	energy of	VOCs with	H ₂ PyP
---	-----------	----------------	---------------	-----------	-----------	--------------------

Name of VOC	Adsorption energy (eV)
Ethanol	-0.21
Acetone	-0.08
Acetonitrile	-0.12
1-hexanol	-0.15
Nonanal	-0.11
Triethylamine	-0.02

 Table S4.
 details on the adsorption energy of VOCs with ZnPyP

Name of VOC	Adsorption energy (eV)
Ethanol	-0.33
Acetone	-0.26
Acetonitrile	-0.23
1-hexanol	-0.34
Nonanal	-0.28
Triethylamine	-0.02

Fig. S14 Plot of Mulliken Charge analyses in VOCs adsorbed H₂PyP and ZnPyP.

Reference

- 1 A. D. Amico, C. Di, R. Paolesse, A. Mantini, C. Goletti, F. Davide and G. Filosofi, Sensors & Actuators: B. Chemical, 2000, 70, 254–262.
- Y. Sivalingam, P. Elumalai, S. V. J. Yuvaraj, G. Magna, V. J. Sowmya, R. Paolesse, K.
 W. Chi, Y. Kawazoe and C. Di Natale, *Journal of Photochemistry and Photobiology A: Chemistry*, 2016, **324**, 62–69.
- 3 Y. Sivalingam, E. Martinelli, A. Catini, G. Magna, G. Pomarico, F. Basoli, R. Paolesse and C. Di Natale, *Procedia Engineering*, 2012, **47**, 446-449.
- 4 G. Marappan, A. K. Mia, K. Puspharaj, S. Vaidyanathan, Y. Kawazoe, Y. Sivalingam and V. J. Surya, *Surfaces and Interfaces*, 2024, **44**, 103648.
- 5 M. Elakia, M. Gobinath, Y. Sivalingam, E. Palani, S. Ghosh, V. Nutalapati and V. J. Surya, *Physica E: Low-Dimensional Systems and Nanostructures*, 2020, **124**, 114232.
- 6 S. Sasi, G. Marappan, Y. Sivalingam, M. Chandran, G. Magna, S. Velappa Jayaraman,

R. Paolesse and C. Di Natale, Surfaces and Interfaces, 2024, 50, 104456.

- P. Palanisamy, M. Anandan, S. Sasi, A. Bora, R. P. Reji, C. B. S. Kumar, Y. Kawazoe,
 G. Raman, S. V. Jayaraman and Y. Sivalingam, *Sustainable Materials and Technologies*, 2025, e01239.
- 8 S. Sasi, P. Palanisamy, R. P. Reji, V. Nutalapati, S. V. Jayaraman, Y. Kawazoe and Y. Sivalingam, *ACS Applied Materials & Interfaces*, 2024, **16**, 61204–61217.