Electronic Supplementary Material (ESI) for RSC Medicinal Chemistry. This journal is © The Royal Society of Chemistry 2024

Supplementary Information: Identification of Lysosomotropism using Explainable Machine Learning and Morphological Profiling Cell Painting Data

Aishvarya Tandon, Anna Santura, Herbert Waldmann^{*}, Axel Pahl^{*}, Paul Czodrowski^{*}

2023

Figure S1: MMPA: (Cumulative) Density distribution of counts (number of occurrence) of transformations.

Figure S2: Descriptor model: Top 10 descriptors' Dependence Plots in the training dataset.

Figure S3: Descriptor model: Top 10 descriptors' Dependence Plots in the time-split dataset.

Figure S4: Descriptor model: Top 10 descriptors' Dependence Plots in the external dataset.

Figure S5: Fingerprint model: X-FP report for the Training Set

SHAP Summary Plot for the Top 10 Morgan Fingerprint Bits

Training Data: X-FP Report

Page 1 of 12

Page 2 of 12

Page 3 of 12

Page 8 of 12

Report generated on 2023-10-12 20:45:16

14

Page 9 of 12

Page 10 of 12

16

Page 11 of 12

X-FP

Bit Analysis

Notes about substructures rendering:

- The molecule fragment is drawn with the atoms in the same positions as in the original molecule.

- The central atom is highlighted in blue.
- Aromatic atoms are highlighted in yellow.
- Aliphatic ring atoms are highlighted in dark grey.

- Atoms/bonds that are drawn in light grey indicate pieces of the structure that influence the atoms' connectivity invariants but that are not directly part of the fingerprint.

Notes about feature importance:

The feature importance here is done by SHAP TreeExplainer. Following are the notes on interpreting the beeswarm SHAP Summary Plots:

- Each dot is the SHAP value of a bit of a molecule (terms used interchangeably are: sample, observation, data point, entry, compound, etc.) in the dataset.

- The dots representing the same SHAP values of a bit overlap. However, the frequency of these values can be observed as the density of the dots along the x-axis.

- Morgan Fingerprint bits are binary in nature. A red dot shows that the bit is switched on for a molecule, meaning that at least one substructure present in this molecule is encoded by this bit. A blue dot means that the bit is switched off for a molecule and this means that no substructures are present in this molecule which are encoded by this bit.

- For binary classification, SHAP values of a Morgan Fingerprint bit greater than zero describe that the presence or absence of this feature contributes towards the model prediction classes' second category (usually labelled as '1'). While the SHAP values less than zero describe that the presence or absence of this feature contributes towards the first category (usually labelled as '0').

Caution:

- Bar plots will be used instead of beeswarm plots as a default SHAP Summary Plot in case of multi-class classification. X-FP analysis for multi-class classification is still under testing and should be completely avoided.

- X-FP analysis for regression models is also under testing, and while such models and their SHAP analysis are compatible, they should be also avoided for time-being.

Page 12 of 12

Figure S6: Fingerprint model: X-FP report for the Time-Split Set

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	
Bit 42 SHAP Summary Plot for the Bit 42: Bit 42 <u>Job Control of the Bit 42:</u> SHAP value (impact on model output) Substructures present:	
Bit 42 SHAP Summary Plot for the Bit 42: Bit 42 <u>-0.8 -0.6 -0.4 -0.2</u> SHAP value (impact on model output) Substructures present:	
SHAP Summary Plot for the Bit 42: Bit 42 <u>-0.6</u> SHAP value (impact on model output) Substructures present:	
Bit 42 -0.8 -0.4 -0.2 0.0 SHAP value (impact on model output) Substructures present:	
Bit 42 -0.8 -0.4 -0.2 0.0 Low	
Substructures present:	
* * * 1 Substructures frequency table (table compounds) (150):	
Substructures frequency table (total compounds: 156): Serial Substructures (as SMARTS) Total occurrences Unique occur	rrences
1 [0](-[CH3])-[C](=[0])-[CH;R](~*)~* 73 73	

Bit 2698 SHAP Summary Plot Bit 2698 -0.6 -c Substructures preser 1 Substructures freque	X-FP <i>Bit Analysis</i> if for the Bit 2698: there value (impact on model output) there there value (impact on model output) there value (impa		
Bit 2698 SHAP Summary Plot Bit 2698 	Bit Analysis for the Bit 2698: there are a constrained output: there a constrained output: ther		
Bit 2698 SHAP Summary Plot Bit 2698 	for the Bit 2698:		
Substructures freque	for the Bit 2698:		
Bit 2698 -0.6 -C Substructures preser *	High grad hap value (impact on model output) htt: 1 2 2		
Bit 2698 -0.6 Substructures preser * 1 Substructures freque	hite able		
Substructures preser	nt:		
*	IL.		
* 0	2		
ouser astaros noque	ncy table (total compounds: 156):		
Serial	Substructures (as SMARTS)	Total occurrences	Unique occurrences
1	[O]~*	542	149
2	[CH2](-[CH3])-[c;R](:[cH;R]~*):[c;R](~*)~*	1	1

		X-FP		
		Bit Analysis		
Bit 1783				
SHAP Summary	Plot for the Bit 1783:			
Bit 1783 •	-0.4 -0.3 -0.2 -0.1 SHAP value (impact on model output)	0.0		
Substructures pr	esent:			
HN 1 1 Substructures free	equency table (total compour	nds: 156):		
Sorial				
Serial	Substructures (as SM	IARTS)	Total occurrences	Unique occurrences
Jeriai	Substructures (as SM [cH;R]1:[cH;R]:[cH;R]-*-[c;R](:[c	IARTS) ;R]:1:[nH;R]~*)~*	Total occurrences 76	Unique occurrences 76
Serial	Substructures (as SM	IARTS) ;R]:1:[nH;R]~*)~*	Total occurrences 76	Unique occurrences 76
1	Substructures (as SM [cH;R]1:[cH;R]-*-[c;R](.[c	IARTS) ;R]:1:[nH;R]~*)~*	Total occurrences	Unique occurrences 76
1	Substructures (as SM	IARTS) ;R]:1:[nH;R]~*)~*	Total occurrences	76

Bit 3200	X-FP		
Bit 3200			
Bit 3200	Bit Analysis		
Bit 3200			
SHAP Summary Plot for	r the Bit 3200:		
Bit 3200	High y 0.1 0.0 0.1 0.2 0.3 Value (impact on model output)		
Substructures present:			
*			
*			
Substructures frequency	/ table (total compounds: 156):		
Serial	Substructures (as SMARTS)	Total occurrences	Unique occurrences
1	[NH](~*)~*		
		174	122
		174	122
		174	122
		174	122
		174	122
		174	122
		174	122
		174	122
		174	122
		174	122
		174	122
		174	122
		174	122
Time Sold Date: V 52 Grant	Due 6 of 10	174	122

<page-header><section-header><section-header><section-header><text><section-header><section-header><section-header><section-header><section-header><section-header><section-header><equation-block></equation-block></section-header></section-header></section-header></section-header></section-header></section-header></section-header></text></section-header></section-header></section-header></page-header>				
<page-header><table-cell><section-header><text><section-header><section-header><section-header><section-header><table-cell></table-cell></section-header></section-header></section-header></section-header></text></section-header></table-cell></page-header>		Х-FP		
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>		Bit Analysis		
<section-header><section-header><section-header><section-header><section-header><section-header>SHAP Summary Plot for the Bit 2049at 2049at 2049Substructures present:at 2010at 201</section-header></section-header></section-header></section-header></section-header></section-header>	Bit 2049			
<figure><figure><section-header><image/><image/><image/></section-header></figure></figure>	SHAP Summary P	Plot for the Bit 2049:		
Substructures present:	Bit 2049		Reature value	
<image/> <image/> <image/> <image/>	Substructures pres	sent:		
Serial Substructures (as SMARTS) Total occurrences Unique occurrences 1 [CH](-^)(-)-* 430 127	* * 1 Substructures frec	* quency table (total compounds: 156):		
1 [CH](-*)(-*)-* 430 127 Time-Split Date: X-FP Report Page 10 of 12 Page 10 of 12 Report generated on 2023-10-12 20:53:11	Sorial			
Trme-Spit Date: X-FP Report	Jeridi	Substructures (as SMARTS)	Total occurrences	Unique occurrences
Time-Spit Data: X-FP Report Page 10 of 12 Report generated on 2023-10-12 20:53:11	1	Substructures (as SMARTS) [CH](~*)(~*)~*	Total occurrences	Unique occurrences
Time-Spilt Data: X-FP Report Page 10 of 12 Report generated on 2023-10-12 20:53:11	1	Substructures (as SMARTS)	Total occurrences	5 Unique occurrences
Time-Spilt Data: X-FP Report Page 10 of 12 Report generated on 2023-10-12 20:53:11	1	Substructures (as SMARTS) [CH](~*)(~*)~*	Total occurrences	5 Unique occurrences 127
Time-Spilt Data: X-FP Report Page 10 of 12 Report generated on 2023-10-12 20:53:11	1	Substructures (as SMARTS) [CH](~*)(~*)~*	Total occurrences	Unique occurrences
Time-Split Data: X-FP Report Page 10 of 12 Report generated on 2023-10-12 20:53:11	1	Substructures (as SMARTS) [CH](~*)(~*)~*	Total occurrences 430	Unique occurrences
Time-Split Data: X-FP Report Page 10 of 12 Report generated on 2023-10-12 20:53:11	1	Substructures (as SMARTS) [CH](~*)(~*)~*	Total occurrences 430	3 Unique occurrences
Time-Split Data: X-FP Report Page 10 of 12 Report generated on 2023-10-12 20:53:11	1	CH](~*)(~*)~*	Total occurrences 430	3 Unique occurrences
Time-Split Data: X-FP Report Page 10 of 12 Report generated on 2023-10-12 20:53:11	1	CH](~*)(-*)~*	430	3 Unique occurrences
Time-Split Data: X-FP Report Page 10 of 12 Report generated on 2023-10-12 20:53:11	1	[CH](~*)(-*)~*	430	3 Unique occurrences
Time-Split Data: X-FP Report Page 10 of 12 Report generated on 2023-10-12 20:53:11	1	[CH](~*)(-*)~*	430	3 Unique occurrences
	1	[CH](-*)(-*)-*	430	3 Unique occurrences

X-FP

Bit Analysis

Notes about substructures rendering:

- The molecule fragment is drawn with the atoms in the same positions as in the original molecule.

- The central atom is highlighted in blue.

- Aromatic atoms are highlighted in yellow.

- Aliphatic ring atoms are highlighted in dark grey.

- Atoms/bonds that are drawn in light grey indicate pieces of the structure that influence the atoms' connectivity invariants but that are not directly part of the fingerprint.

Notes about feature importance:

The feature importance here is done by SHAP TreeExplainer. Following are the notes on interpreting the beeswarm SHAP Summary Plots:

- Each dot is the SHAP value of a bit of a molecule (terms used interchangeably are: sample, observation, data point, entry, compound, etc.) in the dataset.

- The dots representing the same SHAP values of a bit overlap. However, the frequency of these values can be observed as the density of the dots along the x-axis.

- Morgan Fingerprint bits are binary in nature. A red dot shows that the bit is switched on for a molecule, meaning that at least one substructure present in this molecule is encoded by this bit. A blue dot means that the bit is switched off for a molecule and this means that no substructures are present in this molecule which are encoded by this bit.

- For binary classification, SHAP values of a Morgan Fingerprint bit greater than zero describe that the presence or absence of this feature contributes towards the model prediction classes' second category (usually labelled as '1'). While the SHAP values less than zero describe that the presence or absence of this feature contributes towards the first category (usually labelled as '0').

Caution:

- Bar plots will be used instead of beeswarm plots as a default SHAP Summary Plot in case of multi-class classification. X-FP analysis for multi-class classification is still under testing and should be completely avoided.

- X-FP analysis for regression models is also under testing, and while such models and their SHAP analysis are compatible, they should be also avoided for time-being.

Time-Split Data: X-FP Report

Page 12 of 12

Figure S7: Fingerprint model: X-FP report for the External Set

			X-FP			
		l	Bit Analysis			
Bit 2698						
SHAP Summa	ry Plot for the	Bit 2698:				
Bit 2698		0.2 0.4 impact on model output)	High n ea ann Low H			
Substructures	present:					
Substructures	* 1 frequency tabl	le (total compound	ds: 127):			
Substructures	* frequency tabl	le (total compound	ds: 127): rts)	Total	occurrences	Unique occurrences
Substructures Serial	* frequency tabl	le (total compound Substructures (as SMA [0]~*	ds: 127): rts)	Total	occurrences 236	Unique occurrences 95
Substructures Serial	* frequency tabl	le (total compound Substructures (as SMA [0]~*	ds: 127): rts)	Total	occurrences 236	Unique occurrences 95
Substructures Serial	* frequency tabl	le (total compound Substructures (as SMA [0]-*	ds: 127): rts)	Total	occurrences 236	Unique occurrences 95
Substructures Serial	* frequency tabl	le (total compound Substructures (as SMA [0]~*	ds: 127): rts)	Total	occurrences 236	Unique occurrences 95
Substructures Serial	* frequency tabl	le (total compound Substructures (as SMA [0]~*	ds: 127): rts)	Total	occurrences 236	Unique occurrences 95
Substructures Serial	* frequency tabl	le (total compound Substructures (as SMA [0]~*	ds: 127): rts)	Total	occurrences 236	Unique occurrences 95
Substructures Serial	* i frequency tabl	le (total compound Substructures (as SMA [0]-*	ds: 127): rts)	Total	occurrences 236	Unique occurrences 95
Substructures Serial	* frequency tabl	le (total compound Substructures (as SMA [0]-*	ds: 127): rts)	Total	occurrences 236	Unique occurrences 95
Substructures Serial	* frequency tabl	le (total compound Substructures (as SMA [0]-*	ds: 127): rts)	Total	occurrences 236	Unique occurrences 95
Substructures Serial	* frequency tabl	le (total compound Substructures (as SMA [0]-*	ds: 127): rts)	Total	occurrences 236	Unique occurrences 95
Substructures Serial	* frequency tabl	le (total compound Substructures (as SMA [0]-*	ds: 127): rts)	Total	occurrences 236	Unique occurrences 95
Substructures Serial	* frequency tabl	le (total compound Substructures (as SMA [0]-*	ds: 127): rts)	Total	occurrences 236	Unique occurrences 95

	×		
	X-FP		
	Bit Analysis		
Bit 2049			
SHAP Summary P	Plot for the Bit 2049:		
Bit 2049 • • • •	-0.1 0.0 0.1 0.2 0.3 0.4 0.5		
Substructures pres	sent:		
* 1 Substructures free	* quency table (total compounds: 127):		
Serial	Substructures (as SMARTS)	Total occurrences	Unique occurrences
Serial 1	Substructures (as SMARTS) [CH](~*)(~*)~*	Total occurrences	Unique occurrences 87
Serial 1	Substructures (as SMARTS) [CH](~*)(~*)~*	Total occurrences	Unique occurrences 87
Serial 1	Substructures (as SMARTS) [CH](~*)(~*)~*	Total occurrences	Unique occurrences 87
Serial 1	Substructures (as SMARTS) [CH](~*)(~*)~*	Total occurrences	Unique occurrences 87
Serial 1	Substructures (as SMARTS) [CH](~*)(~*)~*	Total occurrences	Unique occurrences 87
Serial 1	Substructures (as SMARTS) [CH](~*)(~*)~*	Total occurrences 157	Unique occurrences 87
Serial 1	Substructures (as SMARTS) [CH](-*)(-**)-*	Total occurrences 157	Unique occurrences 87
Serial 1	Substructures (as SMARTS) [CH](-*)(-**)-*	Total occurrences 157	Unique occurrences 87
Serial	Substructures (as SMARTS) [CH](-*)(-**)-*	Total occurrences	Unique occurrences 87
Serial	Substructures (as SMARTS) [CH](-*)(-**)-*	157	Unique occurrences 87
Serial	נכאון(-*)(-*)-*	Total occurrences	Unique occurrences

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>					
<page-header><page-header><text><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></text></page-header></page-header>			X-FP		
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>			Bit Analysis		
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><image/></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Bit 2715				
<figure><figure><figure><image/><image/><image/><section-header><section-header><section-header></section-header></section-header></section-header></figure></figure></figure>	SHAP Summary	Plot for the Bit 2715:			
Substructures present: • • • • • • • • • • • • • • • • • • •	Bit 2715	0.0 0.2 0.4 0.6 SHAP value (impact on model outp	Uut)		
<image/>	Substructures pr	resent:			
Secial Substructures (as SMARTS) Total occurrences Unique occurrences 1 [CH2](-[CH2]-*)-[NH]-* 28 26	* 1 Substructures fr	*	sunds: 197);		
1 [CH2](-[CH2])-[NH]-* 28 26 Purchase Date: X-FP Report Page 7 of 12 Page 7 of 12 Report generated on 2023-10-12 20:57:2	Substructures in	equency table (total comp	Junus. 127).		
Purchase Data: X-FP Report Page 7 of 12 Report generated on 2023-10-12 20:572	Serial	Substructures (as	SMARTS)	Total occurrences	Unique occurrences
Purchase Date: X-FP Report Page 7 of 12 Report generated on 2023-10-12 20:572	1	Substructures (as [CH2](-[CH2]-*)	SMARTS) -[NH]~*	Total occurrences 28	Unique occurrences 26
Purchase Data: X-FP Report Page 7 of 12 Report generated on 2023-10-12 20:57.2	Serial 1	Substructures (as	SMARTS) -[NH]-*	Total occurrences	Unique occurrences
Purchase Data: X-FP Report Page 7 of 12 Report generated on 2023-10-12 20:57.2	Serial	Substructures (as	SMARTS) -[NH]-*	Total occurrences 28	Unique occurrences 26
Purchase Data: X-FP Report Page 7 of 12 Report generated on 2023-10-12 20:57:2	Serial	Substructures (as	SMARTS) -[NH]-*	Total occurrences 28	Unique occurrences 26
Purchase Data: X-FP Report Page 7 of 12 Report generated on 2023-10-12 20:57:2	Serial	Substructures (as [CH2](-[CH2]-*)	SMARTS) -[NH]-*	Total occurrences 28	Unique occurrences 26
Purchase Data: X-FP Report Page 7 of 12 Report generated on 2023-10-12 20:57:2	Serial	Substructures (as	SMARTS) -[NH]-*	Total occurrences 28	Unique occurrences 26
Purchase Data: X-FP Report Page 7 of 12 Report generated on 2023-10-12 20:57:2	1	Substructures (as	SMARTS) -[NH]-*	Total occurrences	Unique occurrences
Purchase Data: X-FP Report Page 7 of 12 Report generated on 2023-10-12 20:57:2	1	Substructures (as	SMARTS) -[NH]-*	28	Unique occurrences
Purchase Data: X-FP Report Page 7 of 12 Report generated on 2023-10-12 20:57:2	1	Substructures (as	SMARTS) -[NH]-*	28	Unique occurrences
	1	Substructures (as [CH2](-[CH2]-*)	SMARTS) -[NH]-*	28	26

		X-FP		
	В	it Analysis		
D'(0000				
SHAD Summary Pla	at for the Bit 2200.			
Bit 3200	-0.1 0.0 0.1 0.2 0 SHAP value (impact on model output)	High and a second secon		
Substructures prese	ent:			
*	*			
¹ Substructures freque	ency table (total compound	s: 127):		
1 Substructures freque Serial	ency table (total compound Substructures (as SMAR	s: 127): тs)	Total occurrences	Unique occurrences
ء Substructures freque Serial	ency table (total compound Substructures (as SMAR [NH](-*)-*	s: 127): ts)	Total occurrences	Unique occurrences 91
ی Substructures freque Serial	ency table (total compound Substructures (as SMAR [NH](~*)~*	s: 127): ts)	Total occurrences	Unique occurrences 91
1 Substructures freque Serial 1	ency table (total compound Substructures (as SMAR [NH](-*)-*	s: 127): T\$)	Total occurrences	Unique occurrences 91
ہ Substructures freque Serial 1	ency table (total compound Substructures (as SMAR [NH](-*)-*	s: 127): T\$)	Total occurrences	Unique occurrences 91
1 Substructures freque Serial 1	ency table (total compound Substructures (as SMAR [NH](-*)-*	s: 127): ts)	Total occurrences 108	Unique occurrences 91
1 Substructures freque Serial 1	ency table (total compound Substructures (as SMAR [NH](-*)-*	s: 127): ts)	Total occurrences 108	Unique occurrences 91
1 Substructures freque Serial 1	ency table (total compound Substructures (as SMAR [NH](~*)-*	s: 127): T\$)	Total occurrences 108	Unique occurrences 91
1 Substructures freque Serial 1	ency table (total compound Substructures (as SMAR [NH](-*)-*	s: 127): T5)	Total occurrences	Unique occurrences 91
1 Substructures freque Serial 1	ency table (total compound Substructures (as SMAR [NH](-*)-*	s: 127): ts)	Total occurrences	Unique occurrences 91
1 Substructures freque Serial 1	ency table (total compound Substructures (as SMAR [NH](-*)-*	s: 127): ts)	Total occurrences 108	Unique occurrences 91

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>				
<page-header><page-header><page-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></page-header></page-header></page-header>		X-FF	,	
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>		Bit Anal	vsis	
<section-header><text><figure><section-header></section-header></figure></text></section-header>	Bit 3959			
<figure><figure><section-header><section-header><image/><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></figure></figure>	SHAP Summary	y Plot for the Bit 3959:		
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><image/></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Bit 3959 •	2 0.0 0.2 0.4 0.6 0.8 1.0 SHAP value (impact on model output)	High and the second sec	
<image/> <image/> <image/>	Substructures p	resent:		
<table-row></table-row>	* 1 Substructures fr	requency table (total compounds: 12	7):	
1 [CH2](-[CH2]-')-[CH2]-' 115 64	Serial	Substructures (as SMADTS)	Tatal assume	
Purchase Data: X-FP Report Page 9 of 12 Report generated on 2023-10-12 20:57.2		Substituctures (as SimA(15)		nces Unique occurrences
Purchase Date: X-FP Report Page 9 of 12 Report generated on 2023-10-12 20:57:2	1	[CH2](-[CH2]-*)-[CH2]-*	115	64
Purchase Data: X-FP Report Pege 9 of 12 Report generated on 2023-10-12 20:57:2	1	[CH2](-[CH2]-*)-[CH2]-*	115	64
Purchase Data: X-FP Report generated on 2023-10-12 20:57:2	1	[CH2](-[CH2]-*)-[CH2]-*	115	64
Purchase Data: X-FP Report Page 9 of 12 Report generated on 2023-10-12 20:57:2	1	[CH2](-[CH2]-*)-[CH2]-*	115	64
Purchase Data: X-FP Report Page 9 of 12 Report generated on 2023-10-12 20:57:2	1	[CH2](-[CH2]-*)-[CH2]-*	115	64
Purchase Data: X-FP Report generated on 2023-10-12 20:57:2	1	[CH2](-[CH2]-*)-[CH2]-*	115	64
Purchase Data: X-FP Report generated on 2023-10-12 20:57:2	1	[CH2](-[CH2]-*)-[CH2]-*	115	64
Purchase Data: X-FP Report generated on 2023-10-12 20:57:2	1	[CH2](-[CH2]-*)-[CH2]-*	115	64
Purchase Data: X-FP Report Page 9 of 12 Report generated on 2023-10-12 20:57:2	1	[CH2](-[CH2]-*)-[CH2]-*	115	64
Purchase Data: X-FP Report Page 9 of 12 Report generated on 2023-10-12 20:57:2	1	[CH2](-[CH2]-*)-[CH2]-*	115	64
Purchase Data: X+FP Report Page 9 of 12 Report generated on 2023-10-12 20:57:2	1	[CH2](-[CH2]-*)-[CH2]-*	115	64
	1	[CH2](-[CH2]-*)-[CH2]-*	115	64

	X-FP		
	Bit Analysis		
Bit 4052			
SHAP Summary P	Plot for the Bit 4052:		
Bit 4052 • •	High y 5 -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 0.00 SHAP value (impact on model output)		
Substructures pres	sent:		
1	2		
Substructures freq	uency table (total compounds: 127):		
Serial	Substructures (as SMARTS)	Total occurrences	Unique occurrences
1	[n;R](:[nH;R]~*):[c;R](~*)~*	9	9
2	[CH2](-[NH]-[C;K](~")~")-[C;K](:[CH;K]~"):[CH;K]~"	2	
			2
			2
			2
			2
			2
			2
			2
			2
			2
			2
			2
			2
			2

X-FP

Bit Analysis

Notes about substructures rendering:

- The molecule fragment is drawn with the atoms in the same positions as in the original molecule.

- The central atom is highlighted in blue.

- Aromatic atoms are highlighted in yellow.

- Aliphatic ring atoms are highlighted in dark grey.

- Atoms/bonds that are drawn in light grey indicate pieces of the structure that influence the atoms' connectivity invariants but that are not directly part of the fingerprint.

Notes about feature importance:

The feature importance here is done by SHAP TreeExplainer. Following are the notes on interpreting the beeswarm SHAP Summary Plots:

- Each dot is the SHAP value of a bit of a molecule (terms used interchangeably are: sample, observation, data point, entry, compound, etc.) in the dataset.

- The dots representing the same SHAP values of a bit overlap. However, the frequency of these values can be observed as the density of the dots along the x-axis.

- Morgan Fingerprint bits are binary in nature. A red dot shows that the bit is switched on for a molecule, meaning that at least one substructure present in this molecule is encoded by this bit. A blue dot means that the bit is switched off for a molecule and this means that no substructures are present in this molecule which are encoded by this bit.

- For binary classification, SHAP values of a Morgan Fingerprint bit greater than zero describe that the presence or absence of this feature contributes towards the model prediction classes' second category (usually labelled as '1'). While the SHAP values less than zero describe that the presence or absence of this feature contributes towards the first category (usually labelled as '0').

Caution:

- Bar plots will be used instead of beeswarm plots as a default SHAP Summary Plot in case of multi-class classification. X-FP analysis for multi-class classification is still under testing and should be completely avoided.

- X-FP analysis for regression models is also under testing, and while such models and their SHAP analysis are compatible, they should be also avoided for time-being.

Purchase Data: X-FP Report

Page 12 of 12

Table S1: List of selected intuitive RDKit descriptors (version 2022.09.05)

- 1 NumValenceElectrons
- 2 NumRadicalElectrons
- 3 NumAliphaticCarbocycles
- 4 NumAliphaticHeterocycles
- 5 NumAliphaticRings
- 6 NumAromaticCarbocycles
- 7 NumAromaticHeterocycles
- 8 NumAromaticRings
- 9 NumHAcceptors
- 10 NumHDonors
- 11 NumHeteroatoms
- 12 NumRotatableBonds
- 13 NumSaturatedCarbocycles
- 14 NumSaturatedHeterocycles
- 15 NumSaturatedRings
- 16 HeavyAtomMolWt
- 17 TPSA
- 18 FractionCSP3
- 19 HeavyAtomCount
- 20 NHOHCount
- 21 NOCount
- 22 RingCount
- 23 fr_Al_COO
- 24 fr_Al_OH
- 25 fr_Al_OH_noTert
- 26 fr_ArN
- 27 fr_Ar_COO
- $28 fr_Ar_N$
- 29 fr_Ar_NH
- 30 fr_Ar_OH
- 31 fr_COO
- 32 fr_COO2
- 33 fr_C_O
- 34 fr_C_O_noCOO
- 35 fr_C_S
- 36 fr_HOCCN
- 37 fr_Imine
- 38 fr_NH0
- 39 fr_NH1
- 40 fr_NH2
- 41 fr_N_O
- 42 fr_Ndealkylation1
- 43 fr_Ndealkylation2
- 44 fr_Nhpyrrole
- $45 \text{ fr}_{-}\text{SH}$
- 46 fr_aldehyde
- 47 fr_alkyl_carbamate
- 48 fr_alkyl_halide
- 49 fr_allylic_oxid
- 50 fr_amide
- 51 fr_amidine
- 52 fr_aniline
- 53 fr_aryl_methyl
- 54 fr_azide
- 55 fr_azo
- 56 fr_barbitur

fr_benzene 5758 fr_benzodiazepine 59 fr_bicyclic 60 fr_diazo 61 fr_dihydropyridine 62 fr_epoxide 63 fr_ester 64 fr_ether 65 fr_furan 66 fr_guanido 67 fr_halogen 68 fr_hdrzine 69 fr_hdrzone 70 fr_imidazole 71 fr_imide 72 fr_isocyan 73 fr_isothiocyan 74 fr_ketone 75 fr_ketone_Topliss 76 fr_lactam 77 fr_lactone 78 fr_methoxy 79 fr_morpholine 80 fr_nitrile 81 fr_nitro 82 fr_nitro_arom 83 fr_nitro_arom_nonortho 84 fr_nitroso 85 fr_oxazole 86 fr_oxime 87 fr_para_hydroxylation 88 fr_phenol 89 fr_phenol_noOrthoHbond 90 fr_phos_acid 91fr_phos_ester 92 fr_piperdine 93 fr_piperzine 94 fr_priamide 95 fr_prisulfonamd 96 fr_pyridine 97fr_quatN 98 fr_sulfide 99 fr_sulfonamd 100 fr_sulfone 101 fr_term_acetylene 102 fr_tetrazole 103 fr_thiazole 104 fr_thiocyan 105 fr_thiophene 106 fr_unbrch_alkane 107 fr_urea