Supporting Information

2-Aryl-1-hydroxyimidazoles possessing antiviral activity against wide range of orthopoxviruses

including Variola virus.

Elizaveta I. Basanova,*^a Ekaterina A. Kulikova,^a Nikolai I. Bormotov,^b Olga A. Serova,^b Larisa N. Shishkina,^b Alyona S. Ovchinnikova,^b Dmitry A. Odnoshevskiy,^b Oleg V. Pyankov,^b Alexander P. Agafonov,^b Olga I. Yarovaya,^c Sophia S. Borisevich,^d Margarita G. Ilyina,^d Dmitry S. Kolybalov,^c Sergey G. Arkhipov,^c Nikita E. Bogdanov,^{e,f} Marina A. Pavlova,^g Nariman F. Salakhutdinov,^c Valery P. Perevalov,^a Polina A. Nikitina.*^a

¹Department of Fine Organic Synthesis and Chemistry of Dyes, D.I. Mendeleev University of Chemical

Technology of Russia, Miusskaya sq., 9, 125047, Moscow, Russia

²State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559, Koltsovo, Russia

³Department of Medicinal Chemistry, N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, Lavrentyev Ave., 9, 630090, Novosibirsk, Russia

⁴SRF "SKIF", 630559, Koltsovo, Russia

⁵Scientific Educational Center "Institute of Chemical Technology", Novosibirsk State University, Pirogova str., 1, 630090, Novosibirsk, Russia

⁶ V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences,

Koptyuga Ave., 3, 630090 Novosibirsk, Russia

⁷Laboratory of Photoactive Supramolecular Systems, A.N. Nesmeyanov Insitute of Organoelement Compounds RAS, Vavilova str., 28, 119991, Moscow, Russia

Content

Single crystal x-ray analysis	2
Evaluation of antiviral activity	4
Copies of ¹ H and ¹³ C NMR, HSQC, HMBC spectra, HRMS (ESI) and HRMS (EI) for 4a-c, 5a-e,	, 6a-
b, 7a-e, 8a-c, 9a, 9c, 10a-b, 11a-e, 12 and 13	7

Single crystal x-ray analysis.

Parameter/substance	5 a	5b	5c	semihydrate 5c
Chemical formula	C12H11N3O4	C13H11N3O2	C13H11F3N2O2	C26H24F6N4O5
<i>M</i> , g/mol	261.24	241.25	284.24	586.49
Temperature, K	295(4)	293(2)	295(4)	295(4)
Crystal system	triclinic	monoclinic	monoclinic	triclinic
Space group	P-1	$P2_1/c$	Ia	P-1
a, Å	6.2902(6)	13.6508(11)	15.7230(16)	9.7912(6)
<i>b</i> , Å	7.3546(7)	6.9360(8)	14.3769(9)	11.5563(9)
<i>c</i> , Å	12.9978(11)	12.6244(12)	23.665(2)	12.0456(8)
α , deg	85.350(7)	90	90	91.342(6)
β , deg	88.976(7)	93.350(8)	105.339(10)	101.399(5)
γ, deg	83.526(7)	90	90	97.183(6)
$V, Å^{\bar{3}}$	595.47(9)	1193.3(2)	5159.0(8)	1323.97(16)
Z	2	4	4	2
$ ho_{ m calc},{ m g/cm^3}$	1.457	1.343	1.464	1.471
μ, mm ⁻¹	0.112	0.094	0.129	0.130
F(000)	272.0	504.0	2336.0	604.0
Crystal size, mm ³	$0.07 \times 0.05 \times$	$0.2 \times 0.04 \times$	$0.3 \times 0.025 \times$	$0.5 \times 0.02 \times$
J	0.02	0.04	0.01	0.02
20 range for data	5.592 to 56.13	6.466 to 56.282	5.61 to 56.454	4.282 to 52.766
concernon, acg	-8 < h < 8	-16 < h < 18	-20 < h < 20	-12 < h < 12
h k l intervals	-9 < k < 9	-9 < k < 9	-18 < k < 18	-14 < k < 13
	$-17 \le 1 \le 15$	$-16 \le 1 \le 15$	$-30 \le 1 \le 30$	$-14 \le 1 \le 15$
Measured reflections	6217	12229	16053	13672
	2379	2501	9353	5051
Independent	$R_{int} = 0.0212$	$R_{int} = 0.0422$	$[R_{int} = 0.0466]$	$[R_{int} = 0.0496]$
reflections [R_{int}, R_{σ}]	$R_{sigma} = 0.03611$	$R_{sigma} = 0.03671$	$R_{sigma} = 0.0710$	$R_{sigma} = 0.0744$
Data/restraints/para				
meters	2379/0/175	2501/0/168	9353/25/836	5051/6/406
$GOOF$ on F^2	1.027	1.037	1.001	1.055
	$R_1 = 0.0488.$	$R_1 = 0.0479$.	$R_1 = 0.0515.$	$R_1 = 0.0559.$
<i>R</i> factor $(I \ge 2\sigma(I))$	$wR_2 = 0.1285$	$wR_2 = 0.1230$	$wR_2 = 0.1119$	$wR_2 = 0.1510$
	$R_1 = 0.0721.$	$R_1 = 0.0739$.	$R_1 = 0.0993.$	$R_1 = 0.0740.$
R factor (all data)	$wR_2 = 0.1400$	$wR_2 = 0.1354$	$wR_2 = 0.1299$	$wR_2 = 0.1625$
$\Delta \rho_{\rm max} / \Delta \rho_{\rm min}$, e/	-3 0.17/-0.15	0.14/-0.20	0.12/-0.15	0.28/-0.25
CCDC deposition	2340418	2340435	2331165	2340465
number				

Table S1. Crystallographic characteristics, details of the experiments and structure refinement

Parameter/substance	4b	4c	6a	11b
Chemical formula	C16H15N3O2	C16H15F3N2O2	C16H17N3O4	C22H20BrN3O4
M, g/mol	281.31	324.30	315.32	470.32
Temperature, K	298(4)	298(4)	293(2)	295(4)
Crystal system	monoclinic	monoclinic	triclinic	triclinic
Space group	$P2_1/n$	$P2_1/c$	P-1	P-1
<i>a</i> , Å	5.7707(9)	5.8260(13)	8.7742(9)	9.339(2)
<i>b</i> , Å	24.525(3)	25.780(3)	9.1629(9)	13.222(2)
<i>c,</i> Å	10.1461(17)	11.897(3)	10.6026(10)	18.311(4)
a, deg	90	90	86.044(8)	78.539(16)
β , deg	93.696(17)	122.66(3)	88.978(8)	77.793(19)
γ, deg	90	90	65.694(9)	77.049(17)
$V, Å^3$	1432.9(4)	1504.4(7)	774.96(14)	2126.5(8)
Z	4	4	2	4
$\rho_{\rm calc}, {\rm g/cm^3}$	1.304	1.432	1.351	1.469
μ, mm ⁻¹	0.089	0.120	0.099	1.967
F(000)	592.0	672.0	332.0	960.0
Crystal size, mm ³	$0.1 \times 0.05 \times 0.02$	$0.25 \times 0.18 \times 0.01$	$0.25 \times 0.18 \times 0.01$	$0.2 \times 0.05 \times 0.05$
20 range for data collection, deg	4.352 to 56.456	5.15 to 56.384	5.094 to 56.522	4.232 to 52.804
h, k, l intervals	$-7 \le h \le 7, -31 \le k$ $\le 29, -13 \le l \le 13$	$\begin{array}{l} -7 \leq h \leq 7, -30 \leq k \\ \leq 33, -15 \leq l \leq 15 \end{array}$	$-11 \le h \le 11, -11 \le k \le 11, -13 \le l \le 14$	$ \begin{array}{c} -11 \le h \le 11, -15 \\ \le k \le 16, -22 \le l \le \\ 22 \end{array} $
Measured reflections	14927	15466	8302	16882
T 1 1	3107 [R _{int} =	3203 [R _{int} =	3097 [R _{int} =	7829 [R _{int} =
reflections $[R_{int}, R_{\sigma}]$	$0.0904, R_{sigma} = 0.0832]$	$0.0620, R_{sigma} = 0.0575]$	$0.0189, R_{sigma} = 0.0252]$	$0.0916, R_{sigma} = 0.1519$
Data/restraints /parameters	3107/1/195	3203/36/238	3097/0/211	7829/0/545
$GOOF$ on F^2	1.039	1.058	1.046	1.018
	$R_1 = 0.0590,$	$R_1 = 0.0836,$	$R_1 = 0.0399,$	$R_1 = 0.0895,$
R factor $(I \ge 2\sigma(I))$	$wR_2 = 0.1404$	$wR_2 = 0.2347$	$wR_2 = 0.1072$	$wR_2 = 0.2353$
D footon (all data)	$R_1 = 0.1159,$	$R_1 = 0.1079,$	$R_1 = 0.0513,$	$R_1 = 0.2227,$
R lactor (all data)	$wR_2 = 0.1615$	$wR_2 = 0.2493$	$wR_2 = 0.1137$	$wR_2 = 0.2957$
$\Delta ho_{ m max}$ / $\Delta ho_{ m min}$, e/	-3 0.33/-0.2	0.41/-0.25	0.15/-0.20	1.06/-0.68
CCDC deposition				
number	2340467	2336792	2331158	2340466

Table S2. Crystallographic characteristics, details of the experiments and structure refinement for compounds 4b,c, 6a and 11b

Evaluation of antiviral activity.

Table S3. Cytotoxicity and antiviral activity of 2-arylimidazoles 3a-c, 4a-e, 5a,b, 6a-e, 8a,c, 9a,b,10a-e, 12 against the Vaccinia virus (Copenhagen strain) in Vero cell culture.

N⁰	R ¹	R ²	CC₅₀, µg/mL	IC ₅₀ (VACV), μg/mL	SI
			(M±SD, n=3)	(M±SD, n=3)	
4a	NO ₂	Н	42.9±14.6	0.04±0.01	1072
4b	CN	Н	49.2±11.8	0.14±0.04	351
4c	CF ₃	Н	15.0±2.8	0.05±0.01	300
5a	NO ₂	Н	7.4±1.8	0.17±0.05	44
5b	CN	Н	20.4±4.9	0.27±0.08	76
5c	CF ₃	Н	1.1±0,5	0.020±0.009	55
5d	N(CH ₃) ₂	Н	77.5±17.6	3.35±0.74	23
5e	OCH ₃	Н	151.3±36.1	4.41±0.67	34
6a	NO ₂	CH ₃	364.0±85.9	1.25±0.07	291
6b	CN	CH ₃	223.7±28.9	8.42±2.10	27
7a	NO ₂	CH ₃	122.1±28.1	1.31±0.03	93
7b	CN	CH ₃	270.0±71.8	58.21±12.22	<8
7c	CF ₃	CH ₃	52.5±10.5	1.76±0.53	30
7d	N(CH ₃) ₂	CH ₃	53.9±13.5	16.97±4.00	<8
7e	OCH ₃	CH ₃	92.9±23.5	53.97±7.94	<8
9a	NO ₂	_	769.7±192.4	57.83±13.30	13
9c	CF ₃	_	704.0±176.0	4.82±1.40	146
10a	NO ₂	-	820.0±180.4	N/A	-
10b	CN	-	385.0±88.6	N/A	_
11a	NO ₂	$CH_2C_6H_5$	455.0±70.5	2.50±0.62	182
11b	NO ₂	$CH_2(2-BrC_6H_4)$	47.1±8.8	1.37±0.37	34
11c	NO ₂	$CH_2(3,4-CI_2C_6H_3)$	50.0±17.1	0.28±0.14	179
11d	NO ₂	$CH_2(2,6-F_2C_6H_3)$	22.1±4.4	0.52±0.32	43
11e	NO ₂	$CH_2(2,5-(CH_3)_2C_6H_3)$	44.0±9.3	0.56±0.18	79
13	NO ₂	-	140.7±38.0	10.83±1.21	13
Cido	fovir		276.2±45.6	9.07±0.63	34
NIOC	CH-14		470.6±90.2	0.003±0.001	157026

Notes: $CC_{50} - 50\%$ cytotoxicity concentration, at which 50% of cells in uninfected monolayers are destroyed; $IC_{50} - 50\%$ virus inhibitory concentration, at which 50% of cells in infected monolayers are preserved; SI – selectivity index, ratio CC_{50}/IC_{50} ; M – mean value; SD – standard deviation; n=3 – the number of repeats of measurement of CC_{50} and IC_{50} ; N/A – not active.

Table S4. Cytotoxicity and antiviral activity of 2-arylimidazoles **4a-c**, **5a**, **6a**, **7a**, **11a-c**, against the cowpox virus (Grishak strain) and the ectromelia virus (K-1 strain) in Vero cell culture.

N⁰	CC₅₀, µg/mL	IC ₅₀ (CPXV),	SI (CPXV)	IC ₅₀ (ECTV),	SI (ECTV)
	(M±SD, n=3)	µg/mL		µg/mL	
		(M±SD, n=3)		(M±SD, n=3)	
4a	42.9±14.6	0.35±0.11	123	0.12±0.05	358
4b	49.2±11.8	4.82±1.20	10	0.70±0.24	70
4c	15.0±2.8	0.78±0.09	19	0.16±0.01	94
5a	7.4±1.8	1.54±0.37	<8	0.34±0.1	22
6a	364.0±85.9	5.65±1.54	65	3.95±0.18	92
7a	122.1±28.1	6.13±1.35	20	3.82±0.31	32
11a	455.0±70.5	30.6±7.65	15	12.08±1.03	38
11b	47.1±8.8	13.67±1.41	<8	13.51±1.32	<8
11c	50.0±17.1	3.24±0.71	15	0.83±0.27	60
11d	22.1±4.4	3.16±0.70	<8	1.92±0.57	12
11e	44.0±9.3	13.56±0.94	<8	6.05±2.08	<8
Cidofovir	276.2±45.6	13.47±1.24	23	11.01±0.90	28
NIOCH-	470.6±90.2	0.004±0.002	132600	0.003±0.001	149175
14					

Notes: $CC_{50} - 50\%$ cytotoxicity concentration, at which 50% of cells in uninfected monolayers are destroyed; $IC_{50} - 50\%$ virus inhibitory concentration, at which 50% of cells in infected monolayers are preserved; SI – selectivity index, ratio CC_{50}/IC_{50} ; M – mean value; SD – standard deviation; n=3 – the number of repeats of measurement of CC_{50} and IC_{50} .

N⁰	CC₅₀, µg/mL	CC ₅₀ , μg/mL IC ₅₀ (VARV), μg/mL	
	(M±SD, n=3)	(M±SD, n=3)	
4a	42.9±14.6	0.115±0.033	374
4b	49.2±11.8	0.409±0.042	120
4c	15.0±2.8	0.06±0.01	257

1.251±0.080

12.05±1.53

0.003±0.001

291

26

149175

364.0±85.9

276.2±45.6

NIOCH-14 | 470.6±90.2

6a

Cidofovir

Table S5. Cytotoxicity and antiviral activity of 2-arylimidazoles **4a-c** and **6a** against the Variola virus (India3a strain) in Vero cell culture.

Notes: $CC_{50} - 50\%$ cytotoxicity concentration, at which 50% of cells in uninfected monolayers are destroyed; $IC_{50} - 50\%$ virus inhibitory concentration, at which 50% of cells in infected monolayers are preserved; SI – selectivity index, ratio CC_{50}/IC_{50} ; M – mean value; SD – standard deviation; n=3 – the number of repeats of measurement of CC_{50} and IC_{50} .

Copies of ¹H and ¹³C NMR, HSQC, HMBC spectra, HRMS (ESI) and HRMS (EI) for 4a-c, 5a-e, 6a-b, 7a-e, 8a-c, 9a, 9c, 10a-b, 11a-e, 12 and 13.

3-hydroxy-6,6-dimethyl-2-(4-nitrophenyl)-3,5,6,7-tetrahydro-4H-benzimidazol-4-one (4a).

4a

¹H NMR spectrum in DMSO-d₆:

HSQC in DMSO-d₆: {1.01,28.40} {2.64,38.83} {2.35, 52.84} {8.29,124.54} {8.29,129.17} 13 12 11 5 4 3 2 10 9 6 1 8 7 δ, p.p.m. HMBC in DMSO-d₆: {2.35,28.32} {1.01,28.28} {1.01,35.81} {2.64,28.33} {1.01,38.85} {2.35.35.82} {2.35,38.84} {1.01,52.88} {2.64,52.91}

-90 dd -100 0

-0 -10 -20

-30

40

-50 -60 -70 -80

-120 -130 -140 -150 -160 -170 -180

-0

-20

-40

δ, p.p.m.

¹H NMR spectrum in DMSO-d₆:

¹H NMR spectrum in CDCl₃:

¹³C NMR spectrum in DMSO-d₆:

3-Hydroxy-6,6-dimethyl-2-(4-(trifluoromethyl)phenyl)-3,5,6,7-tetrahydro-4Hbenzo[d]imidazol-4-one **(4c)**

4c

¹H NMR spectrum in DMSO-d₆:

1-[1-Hydroxy-4-methyl-2-(4-nitrophenyl)-1H-imidazol-5-yl]ethanone (5a).

¹H NMR spectrum in DMSO-d₆:

¹³C NMR spectrum in DMSO-d₆:

HMBC in DMSO-d₆:

1-(1-Hydroxy-4-methyl-2-(4-(trifluoromethyl)phenyl)-1H-imidazol-5-yl)ethan-1one **(5c)**

¹H NMR spectrum in DMSO-d₆:

¹H NMR spectrum in CDCl₃:

¹³C NMR spectrum in DMSO-d₆:

¹H NMR spectrum in DMSO-d₆:

¹H NMR spectrum in CDCl₃:

¹³C NMR spectrum in DMSO-d₆:

¹H NMR spectrum in DMSO-d₆:

¹H NMR spectrum in CDCl₃:

¹³C NMR spectrum in DMSO-d₆:

¹H NMR spectrum in DMSO-d₆:

¹³C NMR spectrum in DMSO-d₆:

HSQC in DMSO-d₆:

26

4-(1-Methoxy-5,5-dimethyl-7-oxo-4,5,6,7-tetrahydro-1H-benzo[d]imidazol-2-yl)benzonitrile (6b).

¹H NMR spectrum in DMSO-d₆:

¹H NMR spectrum in DMSO-d₆:

¹³C NMR spectrum in DMSO-d₆:

31

¹H NMR spectrum in DMSO-d₆:

¹³C NMR spectrum in DMSO-d₆:

¹H NMR spectrum in DMSO-d₆:

¹³C NMR spectrum in DMSO-d₆:

1-(2-(4-(Dimethylamino)phenyl)-1-methoxy-4-methyl-1H-imidazol-5-yl)ethan-1one (7d)

¹H NMR spectrum in DMSO-d₆:

¹H NMR spectrum in CDCl₃:

¹³C NMR spectrum in DMSO-d₆:

¹H NMR spectrum in DMSO-d₆:

¹³C NMR spectrum in DMSO-d₆:

(E)-N-methyl-1-(4-nitrophenyl)methanimine (8a)

¹H NMR spectrum in CDCl₃:

(E)-4-((Methylimino)methyl)benzonitrile (8b)

¹H NMR spectrum in CDCl₃:

(E)-N-Methyl-1-(4-(trifluoromethyl)phenyl)methanimine (8c).

¹H NMR spectrum in CDCl₃:

¹H NMR spectrum in DMSO-d₆:

¹³C NMR spectrum in DMSO-d₆:

HSQC in DMSO-d₆:

1,6,6-Trimethyl-4-oxo-2-(4-(trifluoromethyl)phenyl)-4,5,6,7-tetrahydro-1H-benzo[d]imidazole 3-oxide (9c)

¹H NMR spectrum in DMSO-d₆:

¹H NMR spectrum in CDCl₃ and DMSO-d₆:

¹³C NMR spectrum in DMSO-d₆:

¹H NMR spectrum in CDCl₃:

¹³C NMR spectrum in DMSO-d₆:

HMBC in CDCl₃:

¹H NMR spectrum in CDCl₃:

¹³C NMR spectrum in DMSO-d₆:

3-(Benzyloxy)-6,6-dimethyl-2-(4-nitrophenyl)-3,5,6,7-tetrahydro-4H-benzo[d]imidazol-4-one (11a)

11a

¹H NMR spectrum in DMSO-d₆:

3-((2-Bromobenzyl)oxy)-6,6-dimethyl-2-(4-nitrophenyl)-3,5,6,7-tetrahydro-4Hbenzo[d]imidazol-4-one (11b)

¹H NMR spectrum in DMSO-d₆:

3-((3,4-Dichlorobenzyl)oxy)-6,6-dimethyl-2-(4-nitrophenyl)-3,5,6,7-tetrahydro-4Hbenzo[d]imidazol-4-one (11c)

¹H NMR spectrum in DMSO-d₆:

3-((2,6-Difluorobenzyl)oxy)-6,6-dimethyl-2-(4-nitrophenyl)-3,5,6,7-tetrahydro-4Hbenzo[d]imidazol-4-one (11d)

3-((2,5-Dimethylbenzyl)oxy)-6,6-dimethyl-2-(4-nitrophenyl)-3,5,6,7-tetrahydro-4Hbenzo[d]imidazol-4-one (11e)

11e

¹H NMR spectrum in DMSO-d₆:

¹³C NMR spectrum in DMSO-d₆:

(E)-N-benzyl-1-(4-nitrophenyl)methanimine (12)

¹H NMR spectrum in DMSO-d₆:

1-Benzyl-6,6-dimethyl-2-(4-nitrophenyl)-4-oxo-4,5,6,7-tetrahydro-1H-benzo[d]imidazole 3-oxide (13)

¹H NMR spectrum in DMSO-d₆:

