Supplementary Materials

Table S1. Data collection and refinement statistics of the ternary complexes of PfDHFR-TS V1/S.

	FB8	FB6
PDB ID code	8YQ8	8YQ9
Data collection		
Wavelength (\AA)	1.5418	1.5418
Space group	P2, 2_{121}	P2, 2121
Molecules/ASU	2	2
Unit-Cell Parameters		
$a b c(\AA)$	57.763156 .41165 .065	58.064156 .496164 .865
$\alpha \beta \gamma$ (deg)	909090	909090
Resolution ${ }^{\text {a }}$ (\AA)	26.1-2.1 (2.2-2.1)	24.55-2.4 (2.5-2.4)
Completeness (\%)	99.7 (100)	99.5 (100.0)
Redundancy	5.9 (4.9)	5.9 (5.6)
<// $\sigma($) $>$	13.5 (2.4)	9.1 (2.0)
CC(1/2)	0.998 (0.915)	0.995 (0.873)
Wilson B-factor	26.8	30.84
$R_{\text {merge }}{ }^{\text {b }}$	0.077 (0.479)	0.127 (0.483)
Refinement		
$R_{\text {work }} / R_{\text {free }}{ }^{\text {c }}$	$0.1945 / 0.2404$	0.217 / 0.2909
Average B-factors (\AA^{2})		
Chains A, B		
Protein	32.2, 38.9	37.8, 47.8
Drg	36.5, 66.9	33.3, 63.5
NDP	28.5, 64.0	38.0, 83.5
UMP	35.0, 40.1	73.4, 83.6
GOL	-	43.5, 40.5
Water	35.5	33.5
R.m.s. deviation 0 - 0.5		
Bond lengths (\AA)	0.0092	0.0087
Bond angles (${ }^{\circ}$)	1.8340	1.8186
Ramachadran Plot		
favored (\%)	97.6	96.4
allowed (\%)	2.4	3.6
outlier (\%)	-	-
${ }^{a}$ Values in parentheses are for the highest-resolution shell.		
mean intensity of symmetry-equivalent reflections. ${ }^{c} R_{\text {work }}=\sum_{\text {nkk }}\| \| F_{\text {obs }}\left\|-\left\|F_{\text {calc }}\right\|\right\| / \sum_{\text {nk }}\left\|F_{\text {obs }}\right\|$, where $F_{\text {obs }}$ and $F_{\text {calc }}$ are the observed and calculated structure-factor amplitudes, respectively. Rtree was calculated in the same manner as R work but using only a 5% unrefined subset of the reflection data.		

Table S2. Docking scores obtained for the lead compounds against QM and WT PfDHFR and HsDHFR.

	Docking score (kcal/mol)		
Compound	QM PfDHFR	WT PfDHFR	HsDHFR
FB1	-11.24	-10.33	-9.12
FB2	-10.51	-11.0	-7.34
FB3	-9.37	-8.88	-8.69
FB4	-10.27	-10.37	-7.71
FB5	-9.83	-9.00	-5.79
FB6	-9.913	-9.88	-6.53
FB7	-9.97	-7.52	-5.69
FB8	-9.69	-11.33	-7.47

Figure S1. Individual molecular docking poses obtained for lead compounds in QM PfDHFR. (A) FB1, (B) FB2, (C) FB3, (D) FB4, (E) FB5, (F) FB7.

Figure S2. Individual molecular docking poses obtained for lead compounds in HsDHFR. (A) FB1, (B) FB2, (C) FB3, (D) FB4, (E) FB5, (F) FB6, (G) FB7, (H) FB8.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 14.

Figure S4. HRMS spectrum of compound 14.

Figure $\mathrm{S} 5 .{ }^{1} \mathrm{H}$ NMR spectrum of compound 15.

Figure S6. HRMS spectrum of compound 15.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 16.

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 16.

Figure S9. HRMS spectrum of compound 16.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 17.

Figure $\mathrm{S} 11 .{ }^{13} \mathrm{C}$ NMR spectrum of compound 17.

Figure S12. HRMS spectrum of compound 17.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 18.

Figure S14. HRMS spectrum of compound 18.

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 19.

Figure S16. HRMS spectrum of compound 19.

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 20.

Figure S18. HRMS spectrum of compound 20.

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 21.

Figure S20. HRMS spectrum of compound 21.

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum of compound FB1.

Figure S22. ${ }^{13} \mathrm{C}$ NMR spectrum of compound FB1.

Figure S23. HRMS spectrum of compound FB1.

Figure S24. ${ }^{1} \mathrm{H}$ NMR spectrum of compound FB2.

Figure S25. ${ }^{13} \mathrm{C}$ NMR spectrum of compound FB2.

Figure S26. HRMS spectrum of compound FB2.

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum of compound FB3.

Figure S28. ${ }^{13} \mathrm{C}$ NMR spectrum of compound FB3.

Figure S29. HRMS spectrum of compound FB3.

Figure $\mathrm{S} 30 .{ }^{1} \mathrm{H}$ NMR spectrum of compound FB4.

Figure S31. ${ }^{13} \mathrm{C}$ NMR spectrum of compound FB4.

Figure S32. HRMS spectrum of compound FB4.

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum of compound FB5.

Figure S34. ${ }^{13} \mathrm{C}$ NMR spectrum of compound FB5.

Figure S35. HRMS spectrum of compound FB5.

Figure S36. ${ }^{1} \mathrm{H}$ NMR spectrum of compound FB6.

Figure S37. ${ }^{13} \mathrm{C}$ NMR spectrum of compound FB6.

Figure S38. HRMS spectrum of compound FB6.

Figure S39. ${ }^{1} \mathrm{H}$ NMR spectrum of compound FB7.

Figure $\mathrm{S} 40 .{ }^{13} \mathrm{C}$ NMR spectrum of compound FB7.

Figure S41. HRMS spectrum of compound FB7.

Figure S42. ${ }^{1} \mathrm{H}$ NMR spectrum of compound FB8.

Figure S43. ${ }^{13} \mathrm{C}$ NMR spectrum of compound FB8.

Figure S44. HRMS spectrum of compound FB8.

