Exploring 7β-Amino-6-Nitrocholestens as COVID-19 Antivirals: In silico, Synthesis, Evaluation, and Integration of Artificial Intelligence (AI) in Drug Design: Assessing the Cytotoxicity and Antioxidant Activity of 3β-Acetoxynitrocholestane

Table S1. Molecular docking analysis that examined the binding energies and hydrogen bond interactions of ligands with active-site amino acid residues of PLpro, 3CLpro/Mpro, and RdRp targets.

	Receptors (PDB No#)	Binding Affinity (kcal/mol)	Intermolecular Interactions			
Compds			Intera	cting Amin Residues	o Acid	Conventional Hydrogen Bonds
1	6lu7	-5.1	MET165, ASN142, CYS145	GLU166, MET49,	GLN189, GLY143,	1
	6m71	-7.2	LEU172, ASP170, PRO677, PHE396, THR394	ARG249, LEU460, ASN459, CYS395,	PRO169, PRO461, ARG349, ARG457,	1
	6w9c	-6.8	LYS306, SER278, THR257, LYS217, GLU307	THR259, PHE258, TYR305, TYR213,	GLY256, LYS279, HIS255, GLU214,	1
2	6lu7	6.1	ASN142, MET165, GLY143	GLN189, HIS163,	GLU166, CYS145,	1
	6m71	-7.0	ARG349, LEU172, ARG249, ASN459, PRO677	PHE396, THR394, LEU460, PRO461,	CYS395, ARG457, ASP170, PRO461,	1
	6w9c	-6.0	SER278, GLU124, LYS306, LYS279	HIS255, GLN121, PHE258,	GLY256, GLN122, THR259,	0
3	6lu7	-6.5	LEU167, ALA191, HIS163, CYS145, HIS164, MET49, G	THR190, GLN192, ASN142, GLY143, HIS41, LN189	Pro168, GLU166, LEU141, SER144, MET165,	2
	6m71	-7.6	PRO461, THR246, VAL675, PRO677, TYR456, <i>A</i>	THR319, ARG249, ARG349, THR394, ARG457, AS	LEU251, LEU460, PHE396, CYS395, N459	1

	6w9c	-6.1	CYS155, ASN156, ARG82,
			PHE79, ASP76, THR74, TYR154, 2
			TYR171, GLN174, HIS175
			PRO168, THR190, GLN189,
4	6lu7	6.1	HIS41, MET49, GLY143,
			CYS145, MET165, ASN142, 0
			GLU166, HIS163, GLU166
			ASP865, SER861, PHE594,
	6m71	-7.4	ILE864, LYS593, GLN815,
			TRP598, MET601, CYS813, 2
			LEU758, GLY590, ILE589,
			VAL588, THR591, SER592
		-6.2	THR257, TYR310, THR313,
	6.0		THR312, LYS217, LYS218,
	6W9C		TYR213, TYR305, THR257,
			GLU307
			MET165, GLU166, GLN189,
			SER46, MET49, THR25, THR26,
	6lu7	-6.4	GLY143, HIS41, 1
			ASN142,CYS145, SER144,
			LEU141
5	6m71	-6.6	THR394, PHE396, PRO461,
5			THR319, ARG349, PRO323, 0
			PHE321, TYR265, SER255
	6w9c	-6.1	GLU307, LYS306, THR259,
			SER278, GLY256, LYS279,
			PHE258, HIS255, TYR305,
		THR257, TYR213, LYS217	
	6lu7	-6.6	MET165, GLU166, GLN189,
			MET49, THR25, THR26,
			GLY143, HIS41, 0
			ASN142,CYS145, SER144,
			LEU141
6	6m71	-7.0	LEU460, ASN459, PRO461,
			PRO677, ARG349, PHE396,
			CYS395, TYR456, THR394, 0
			LEU172, PRO323, PRO169,
			ARG457
	6w9c	-6.5	THR257, TYR305, GLU307,
			THR312, THR311, THR313, 1
			LYS217, LYS218, TYR213,
		1 YK310, GLU214	
7	6lu7	-5.8	ME149, HIS41, GLY143,
			$\begin{bmatrix} CYS145, & MET165, & HIS164, \\ ACDM142, & HIC162, & CMM166, \end{bmatrix} = 0$
			ASN142, HIS163, GLU166,
			PK0168, THK190, GLN189
	6m71	-6.9	PRO461, ASN459, PRO677, 1

			ARG457, LEU172, PRO169,
			ARG249, THR394, PHE396,
			PRO323, ARG349, VAL675
		-6.5	GLY256, LYS306, THR257,
	6w9c		GLU214, SER212, PHE258,
			TYR305, LYS254, LEU253,
			TYR251, GLU252
	6lu7	-6.2	THR190, ALA191, GLN192,
			PRO168, GLU166, HIS163,
			ASN142, MET165, HIS164, 2
			HIS41, MET49, GLN189,
			CYS145, GLY143
		-7.0	PRO677, TYR456,ARG457,
8			ASN459, CYS395, THR394,
	6m71		PHE396, PRO323, ARG349, 2
			THR319, THR246, ARG249,
			PRO461
	6w9c	-5.9	TYR137, ARG138, GLN133,
			PRO130, GLU70, ASP12, ILE14, 0
			ASN15, TYR71, ARG138
	6lu7	-7.0	PHE140, LEU141, HIS163,
			ASN142, LEU27, GLY143,
			THR24, HIS41, THR25, THR26, 2
			CYS145, MET49, GLN189,
			GLU166
	6m71	-7.4	SER397, TYR149, PHE396,
9			TYR265, LEU122, THR324,
			LYS267, TRP268, ILE266, 2
			PRO322, PHE321, VAL320,
			SER255
	6w9c	-7.2	LYS306, THR259, GLY256,
			THR257, GLU214, PHE258,
			TYR251, TYR305, LYS254,
			GLY256

Figure S1. ¹³C NMR spectrum of steroidal compound 4

Figure S2. ¹³C NMR spectrum of steroidal compound 5

Figure S3. ¹³C NMR spectrum of steroidal compound 6

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

Figure S4. ¹³C NMR spectrum of steroidal compound 7

Figure S5. ¹³C NMR spectrum of steroidal compound 8

Figure S6. ¹³C NMR spectrum of steroidal compound 8

Figure S7 displays descriptors for 60 AI-generated molecules. (a) Shows the AI molecules with their division in molecular weight percentages. (b) and (c) plot molecular weight (Weight) against molecular lipophilicity (LogP) and solubility (LogS).

Figure S8. Nonbonding Interactions of Compounds 4-8 with Human PIM-1 Kinase (PDB: 20BJ) from Molecular Docking

Figure S9. During the simulation, the ligand torsion profile of Compound-1 depicts the distribution of scaffold dihedrals. The conformational development of each rotatable bond (RB) in the ligand throughout the course of the simulation trajectory (0.00 to 100.00 ns) summarized in the ligand torsions graphic. The 2d dimensional graphic of a ligand with color-coded rotatable bonds is displayed in the top panel. A dial plot and matching coloured bar plots are included for each rotatable bond torsion. Dial (or radial) charts depict the confirmation of the torsion during the simulation. The beginning of the simulation is in the center of the radial plot and the time evolution is plotted radially outwards.

The torsion angle profile in the MD simulation is produced partially by the flexible side chain of the ligand (9) skeleton (Figure S9). The simulation starts with the various conformations that are radially outward recorded for each rotatable bond. Bar plots show the probability density of each torsional rotation. The contact between a ligand and a receptor, which resides in a rigid structure that can sustain the same binding orientation throughout the simulation, produces a smaller band with less diversity. The ligand torsion profile analysis offers useful information for identifying the pharmacophore features required for interacting with important residues in proteins. In Figure 2, the eight rotatable bonds (RB) of the ligand-C3-O1', O1'-C23, C6-N1", C17-C18, C18-C19, C19-C20, C20-C21, and C21-C22—that are represented by the colours green, blue, pastel red, yellow, violet, dark green, red, and orange show the ligand's strong conformational flexibility. The ratable bonds (RB) at the start of the simulation (0°) O3'-C23 and C17-C18 RBs are affected by the rigid ligand rings and methyls C25 and C26, which have high potential energies of 13.47 and 7.64 kcal/mol, respectively. Additionally, the MD simulation showed that the ligand's stiff core remained stable in complexes. The nitro group nitrogen atom and the oxygen atom -C-O-C-are involved in a binding contact, while the other oxygen atom is involved in a non-binding interaction. This suggests that the oxygen atom of the ligand ring was successful in firmly attaching protein. An illustration of the ligand's characteristics solely determined by the oxygen atom may be seen in Figure S9.