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Supplementary Figure 1: Cross-Validation Scheme for DeltaClassifiers. Datapoints undergo
cross-merging to generate pairs following cross-validation splits to circumvent data leakage risks.
As such, each molecule from the original dataset only occurs in molecule pairs within the training
or testing data splits, but never both. Additionally, if it is unknown if the property is improved
(e.g., both molecules’ properties are denoted as “>") or the difference is less than 0.1 pICs, the

pair is removed.
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Supplementary Figure 2: Tree-based DeltaClassifier Performance Following Training with
Only Exact Values (ACLOE), All Data (ACLAD), and Demilitarized Data (ACL) Tested on
Demilitarized Data. (A) Violin plots of model performance following 1x10 cross-validation for
230 ChEMBL datasets in terms of accuracy, F1 score, and AUC. (B) Pie charts showing percentage

of datasets ACL outcompeted ACLOE and ACLAD.



Accuracy F1 Score ucC
RF 4.3%

RF 7.8%

RF 4.3%
% : 548/

ACL
vs. RF

Supplementary Figure 3: Tree-based DeltaClassifier Performance Compared with
Traditional Models. Pie charts showing percentage of datasets the tree-based DeltaClassifier
(ACL) outcompeted (green), exhibited a non-significant difference (gradient), or underperformed
Random Forest (RF, red), XGBoost (XGB, black), and Chemprop (CP, blue) during 3x10-fold
cross-validation. Statistical significance from paired t-test for three repeats (p < 0.05). Note that
the DeltaClassifierLite is based on XGBoost. The difference is that the DeltaClassifiers run these
algorithms in classification mode after creating paired training data while the standard

implementations, including Random Forest and Chemprop, run in regression mode.
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Supplementary Figure 4: Modified Z-Score Calculations. (A) Average modified Z-scores for
model (Random Forest (RF), XGBoost (XGB), Chemprop (CP), tree-based DeltaClassifer (ACL),
and DeltaClassifer (DAC)) performance following 3x10 cross-validation for 230 ChEMBL
datasets in terms of accuracy, F1 score, and AUC. (B) Median and 95% confidence interval of
average modified z-scores. Note that the DeepDeltaClassifer uses the neural network
implementation of Chemprop and the DeltaClassifierLite is based on XGBoost. The difference is
that the DeltaClassifiers run these algorithms in classification mode after creating paired training

data while the standard implementations, including Random Forest, run in regression mode.
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Supplementary Figure 5: Percent of Bounded Data Correlates with ACL Improvement Over
Traditional Models. Scatterplots showing correlation and Pearson’s r values of tree-based
DeltaClassifer (ACL) performance improvement over Random Forest (RF), XGBoost (XGB)
Chemprop (CP), and tree-based DeltaClassifer trained only on exact values (ACLOE) following
1x10 cross-validation for 230 ChEMBL datasets with the percent of bounded data within each

dataset in terms of accuracy, F1 score, and AUC. Note that the DeepDeltaClassifer uses the neural



network implementation of Chemprop and the DeltaClassifierLite is based on XGBoost. The
difference is that the DeltaClassifiers run these algorithms in classification mode after creating
paired training data while the standard implementations, including Random Forest, run in

regression mode.
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Supplementary Figure 6: Limited Correlation of Dataset Size with Model Performance.
Scatterplots showing correlation and Pearson’s r values of model performance following 1x10
cross-validation for 230 ChEMBL datasets with dataset size in terms of accuracy, F1 score, and
AUC with dataset size for Random Forest (RF), XGBoost (XGB), Chemprop (CP), tree-based
DeltaClassifer trained on only exact data (ACLOE), tree-based DeltaClassifer (ACL), deep
DeltaClassifer trained on only exact data (DACOE), and deep DeltaClassifer (DAC). Note that the
DeepDeltaClassifer uses the neural network implementation of Chemprop and the
DeltaClassifierLite is based on XGBoost. The difference is that the DeltaClassifiers run these
algorithms in classification mode after creating paired training data while the standard

implementations, including Random Forest, run in regression mode.
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Supplementary Figure 7: Comparison of DeltaClassifiers with Traditional Methods Across
Matching or Non-Matching Scaffolds. (A) Violin plots of model performance following 1x10
cross-validation for non-matching scaffold pairs for 230 ChEMBL datasets in terms of accuracy,
F1-score, and ROCAUC. (B) Pie charts showing percentage of datasets our DeepDeltaClassifer
(DAC) outcompeted Random Forest (RF), XGBoost (XGB), Chemprop (CP), and
DeltaClassiferLite (ACL) in terms of accuracy, F1-score, and ROCAUC for non-matching scaffold
pairs. (C) Z-scores for model performance in terms of accuracy, F1 score, and ROCAUC for non-
matching scaffolds. (D) Median and 95% confidence interval of z-scores for non-matching
scaffold pairs. (E) Modified Z-scores for model performance for non-matching scaffold pairs
following 1x10 cross-validation for 230 ChEMBL datasets in terms of accuracy, F1 score, and
AUC. (F) Median and 95% confidence interval of modified z-scores for non-matching scaffold
pairs. (G) Violin plots of model performance following 1x10 cross-validation for matching
scaffold pairs for 230 ChEMBL datasets in terms of accuracy, F1-score, and ROCAUC. (H) Pie
charts showing percentage of datasets our DAC outcompeted RF, XGB, CP, and ACL in terms of
accuracy, F1-score, and ROCAUC for matching scaffold pairs. (I) Z-scores for model performance
in terms of accuracy, F1 score, and ROCAUC for matching scaffold pairs. (J) Median and 95%
confidence interval of z-scores for matching scaffold pairs. (K) Modified Z-scores for model
performance for matching scaffold pairs following 1x10 cross-validation for 230 ChEMBL
datasets in terms of accuracy, F1 score, and AUC. (L) Median and 95% confidence interval of
modified z-scores for matching scaffold pairs. Note that the DeepDeltaClassifer uses the neural
network implementation of Chemprop and the DeltaClassifierLite is based on XGBoost. The

difference is that the DeltaClassifiers run these algorithms in classification mode after creating



paired training data while the standard implementations, including Random Forest, run in

regression mode.
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Supplementary Figure 8: Percent of Unique Scaffolds Show Limited Correlation with DAC
Improvement Over Traditional Models. Scatterplots showing correlation and Pearson’s r values
of average deep DeltaClassifer (DAC) performance improvement over Random Forest (RF),
XGBoost (XGB), and Chemprop (CP) following 3x10 cross-validation for 230 ChEMBL datasets
with the percent of unique Murcko scaffolds within each dataset in terms of accuracy, F1 score,

and AUC.
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Supplementary Figure 9: Percent of Unique Scaffolds Show Limited Correlation with ACL
Improvement Over Traditional Models. Scatterplots showing correlation and Pearson’s r values
of average tree-based DeltaClassifer (ACL) performance improvement over Random Forest (RF),
XGBoost (XGB), and Chemprop (CP) following 3x10 cross-validation for 230 ChEMBL datasets
with the percent of unique Murcko scaffolds within each dataset in terms of accuracy, F1 score,

and AUC.
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Supplementary Figure 10: Standard Regression Approach to Classify Potency

Improvements.
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Supplementary Figure 11: DeltaClassifier Approach to Classify Potency Improvements.



Demilitarized Removal of Pairs with Unknown Potency

Remove

Ais
exact, B
is >’

¥

Ais
exact, B
is ‘<’

B oW [keer]

Remove
» Remove

Ais less » -
. than B

Remove
»




Supplementary Figure 12: Removal of Pairs with Unknown Potency or Differences Below
Demilitarization Threshold. ‘A’ represents the known potency value for the first molecule within
the pair. ‘B’ represents the known potency value for the second molecule within the pair. ‘A’
represents the difference between ‘A’ and ‘B’. ‘D’ represents the threshold set for demilitarization.
Rightward facing arrows indicate ‘yes’ to the scenario proposed within the diamond while

downward facing arrows indicate ‘no’.



Supplementary Tables

Supplementary Table 1: Potency Distribution of Available 1Cs, Data. Percentages of exact,
bounded, and all datapoints that are above or below 1 uM in potency and average number of unique

scaffolds in each dataset for our 230 ICs, datasets.

Exact |Bounded All
>1uM 63.4% 12.8% | 54.4%
<1uM 36.6% | 87.2% | 45.6%
Average
Unique 167 52 208
Scaffolds

Supplementary Table 2: Results for 1x10-Fold Cross-Validation Tested on Demilitarized
Data. Average and standard deviation of accuracy, F1 score, and AUC are presented for all models
following removal of molecular pairs with differences greater than 0.1 pICs, in the test set across
our 230 ICs, datasets. Highest statistically significant overall performances across all models are
underlined. Highest statistically significant performances within each model family (traditional

models, tree-based A classifiers, and deep A classifiers) are bolded.

Traditional Methods Tree-Based A Classifiers Deep A Classifiers
(Single Molecule Regression) (XGBoost) Chemprop
Metric RF XGB CcP ACLOE ACLAD ACL DACOE DACAD DAC
Accuracy 0.795 0.785 0.748 0.785 0.824 0.824 0.797 0.836 0.836
+0.057 | +0.061 | +0.069 +0.059 +0.048 +0.048 +0.056 10.045 $0.045
F1 Score 0.795 0.785 0.748 0.783 0.823 0.824 0.796 0.835 0.836
$0.057 | +0.061 | +0.069 +0.062 $0.048 10.048 +0.059 10.045 10.045
ROCAUC 0.874 0.861 0.825 0.863 0.901 0.901 0.874 0.910 0.910
+0.063 | +0.069 | +0.081 +0.065 +0.048 +0.047 +0.060 +0.042 +0.042




Supplementary Table 3: Results for 1x10-Fold Cross-Validation Tested on All Datapoints.
Average and standard deviation of accuracy, F1 score, and ROCAUC are presented for all models
across our 230 ICs, datasets. Highest statistically significant overall performances across all
models are underlined. Highest statistically significant performances within each model family

(traditional models, tree-based A classifiers, and deep A classifiers) are bolded.

Traditional Methods Tree-Based A Classifiers Deep A Classifiers
(Single Molecule Regression) (XGBoost) Chemprop
Metric RF XGB CcP ACLOE ACLAD ACL DACOE DACAD DAC
Accuracy 0.785 0.776 0.742 0.770 0.807 0.804 0.780 0.817 0.815
+0.055 | +0.058 | +0.065 +0.056 +0.048 +0.048 +0.054 +0.045 +0.045
F1 Score 0.780 0.770 0.736 0.764 0.803 0.801 0.775 0.813 0.812
+0.057 | +0.060 | +0.068 +0.060 +0.050 +0.049 +0.058 +0.047 +0.047
ROCAUC 0.857 0.845 0.810 0.848 0.886 0.885 0.859 0.896 0.895
+0.064 | +0.069 | +0.080 +0.065 +0.050 +0.050 +0.060 | 0.046 10.045

Supplementary Table 4: Results for 1x10-Fold Cross-Validation Tested Without Same
Molecule Pairs. Average and standard deviation of accuracy, F1 score, and ROCAUC are
presented for all models following removal of molecular pairs of the same molecule in the test set
across our 230 ICsy datasets. Highest statistically significant overall performances across all
models are underlined. Highest statistically significant performances within each model family

(traditional models, tree-based A classifiers, and deep A classifiers) are bolded.

Traditional Methods Tree-Based A Classifiers Deep A Classifiers
(Single Molecule Regression) (XGBoost) Chemprop
Metric RF XGB CcpP ACLOE ACLAD ACL DACOE DACAD DAC
Accuracy 0.781 0.771 0.736 0.772 0.811 0.81 0.784 0.822 0.822
+0.057 | +0.060 | +0.067 +0.058 +0.049 +0.049 +0.055 +0.046 +0.046
F1 Score 0.780 0.770 0.736 0.769 0.809 0.81 0.782 0.821 0.821
+0.057 | +0.060 | +0.068 +0.061 +0.050 +0.049 +0.058 10.047 10.047
ROCAUC 0.861 0.848 0.813 0.850 0.889 0.889 0.862 0.899 0.898
+0.064 | +0.070 | +0.081 +0.066 $0.050 +0.050 +0.061 10.045 10.045




Supplementary Table 5: Demilitarization Parameter Optimization for 1x10-Fold Cross-
Validation Tested. Average and standard deviation of rankings of z-scores for accuracy, F1 score,
and ROCAUC are presented for all models across our 230 ICs, datasets. Highest statistically

significant performances across all models are underlined and bolded.

Deep A Classifiers
(Chemprop)
Metric 0.1 pICso 0.5 pICsp 1.0 plCso

Accurac 0.815 0.812 0.807
i 0.045 +0.046 £0.049

F1 Score 0.812 0.81 0.804
+0.047 +0.048 +0.05

0.895 0.893 0.89
ROCAUC +0.045 +0.047 +0.051

Supplementary Table 6: Demilitarization Parameter Optimization for 1x10-Fold Cross-
Validation Tested Without Same Molecule Pairs. Average and standard deviation of rankings
of z-scores for accuracy, F1 score, and ROCAUC are presented for all models across our 230 1Cs,

datasets. Highest statistically significant performances across all models are underlined and

bolded.
Deep A Classifiers
(Chemprop)
Metric 0.1 pICso 0.5 pIC5o 1.0 pICso

Accurac 0.822 0.819 0.814

i 10.046 +0.047 £0.05

F1 Score 0.821 0.819 0.813

+0.046 +0.047 +0.05

0.898 0.897 0.893

ROCAUC +0.045 +0.047 +0.051

Supplementary Table 7: Y-Shuffling Adversarial Control Experiment Collapses Model

Performance. Average and standard deviation of accuracy, F1 score, and ROCAUC are presented




for 1x10-fold cross-validation following Y-shuffling across our 230 ICs, datasets. Y-shuffling
destroys the correlation between input and output variables and therefore creates a more “random”

model with an accuracy, F1-score, and ROC-AUC close to 0.5.

A Classifiers (after Y-shuffling)

Metric ACL DAC
A 0.554 0.551
ceuracy +0.052 +0.053
0.544 0.542
F1 Score +0.052 +0.052
0.578 0.577
ROCAUC +0.074 +0.077

Supplementary Table 8: Ranking of Model Performance for 3x10-Fold Cross-Validation
Tested on Demilitarized Data. Average and standard deviation of rankings of z-scores for

accuracy, F1 score, and ROCAUC are presented for all models across our 230 ICs, datasets.

Traditional Methods Deep A Classifiers
(Single Molecule Regression) (Chemprop)

Metric RF XGB cP ACL DAC
Accurac 2.907 3.837 4.835 2.130 1.291
¥ +0.799 +0.595 +0.560 +0.724 +0.652

F1 Score 2.913 3.841 4.830 2.128 1.287
+0.801 +0.593 +0.578 +0.716 +0.637

2.857 3.865 4.813 2.091 1.374

ROCAUC +0.788 +0.587 +0.564 +0.839 +0.705

Supplementary Table 9: Performance of k-NN Approach Compared to DeltaClassifiers.
Average and standard deviation of accuracy, F1 score, and ROCAUC are presented for 1x10-fold
cross-validation following removal of molecular pairs with differences greater than 0.1 pICs in

the test set across our 230 ICsy datasets. Highest statistically significant overall performances



across all models are underlined. Statistically significant improvements compared to the k-nearest

neighbours algorithm (k-NN) are bolded.

Parameter Free A Classifiers
Metric k-NN ACL DAC
Accuracy 0.781 0.824 0.836
+0.064 +0.048 +0.045
F1 Score 0.780 0.824 0.836
+0.066 +0.048 +0.045
0.860 0.901 0.910
ROCAUC +0.071 +0.047 +0.042

Supplementary Table 10: Results for 80-20 Scaffold Split on Demilitarized Data. Average and
standard deviation of accuracy, F1 score, and ROCAUC are presented for five models across our

230 ICsy datasets. Highest statistically significant overall performances across all models are

underlined and bolded.
Traditional Methods A Classifiers
(Single Molecule Regression)
Metric RF XGB CP ACL DAC

Accurac 0.730 0.689 0.719 0.742 0.766

¥ +0.074 | +0.087 | +0.074 +0.071 +0.073

F1 Score 0.730 0.689 0.718 0.742 0.766

+0.074 | +0.087 | +0.074 +0.071 +0.072

0.805 0.753 0.790 0.814 0.839

ROCAUC +0.086 | +0.111 | +0.086 +0.082 +0.084

Supplementary Table 11: Results for 80-20 Scaffold Split on All Datapoints Without
Demilitarization. Average and standard deviation of accuracy, F1 score, and ROCAUC are
presented for five models across our 230 ICs, datasets. Highest statistically significant overall

performances across all models are underlined and bolded.

Traditional Methods A Classifiers
(Single Molecule Regression)




Metric RF XGB cP ACL DAC
accuray | 0722 | 0711 | 0s684 0729 | 0.751
+0.071 | +0.070 | +0.083 +0.069 | 0.071

1 score | 0718 | 0.707 | 0680 0728 | 0.750
+0.072 | +0.071 | 0.084 +0.069 | 0.071

0792 | 0.778 | 0.742 0802 | 0.826

ROCAUC | 10.085 | +0.085 | +0.107 +0.081 | +0.083

Supplementary Table 12: Results for 80-20 Scaffold Split Without Demilitarization or Same
Molecule Pairs. Average and standard deviation of accuracy, F1 score, and ROCAUC are
presented for five models across our 230 ICs, datasets. Highest statistically significant overall

performances across all models are underlined and bolded.

Traditional Methods A Classifiers
(Single Molecule Regression)
Metric RF XGB CcP ACL DAC

Accurac 0.719 0.680 0.708 0.732 0.754
¥ +0.072 | +0.084 | +0.071 +0.070 +0.071

F1 Score 0.718 0.680 0.707 0.732 0.754
+0.072 | +0.084 | +0.071 +0.069 $0.071

0.793 0.743 0.779 0.803 0.828

ROCAUC +0.085 | +0.108 | +0.085 +0.082 +0.084

Supplementary Table 13: Results for 1x10-Fold Cross-Validation Tested Without Same
Molecule Pairs and Bounded Data. Average and standard deviation of accuracy, F1 score, and
ROCAUC are presented for all models following removal of molecular pairs of the same molecule
and molecular pairs incorporating a molecule with a bounded ICs, value in the test set across our
230 ICs, datasets. Highest statistically significant overall performances across all models are
underlined. Highest statistically significant performances within each model family (traditional

models, tree-based A classifiers, and deep A classifiers) are bolded.



Traditional Methods Tree-Based A Classifiers Deep A Classifiers
(Single Molecule Regression) (XGBoost) Chemprop
Metric RF XGB cpP ACLOE ACLAD ACL DACOE | DACAD DAC
Accuracy 0.791 0.784 0.747 0.784 0.779 0.779 0.792 0.790 0.791
+0.047 | +0.049 | +0.052 +0.048 +0.052 +0.052 +0.048 | 10.049 +0.049
F1 Score 0.790 0.782 0.746 0.781 0.777 0.778 0.790 0.788 0.790
+0.048 | +0.050 | +0.053 +0.050 +0.054 +0.053 +0.050 +0.052 +0.051
ROCAUC 0.872 0.863 0.827 0.863 0.857 0.858 0.871 0.867 0.867
+0.049 | +0.052 | +0.062 +0.052 +0.058 +0.057 +0.051 +0.053 +0.052

Supplementary Table 14: Results for 1x10-Fold Cross-Validation Tested on Demilitarized
Non-Matching Scaffold Pairs. Average and standard deviation of accuracy, F1 score, and
ROCAUC are presented for all models across our 230 ICs, datasets. Highest statistically
significant overall performances across all models are underlined. Highest statistically significant
performances within each model family (traditional models, tree-based A classifiers, and deep A

classifiers) are bolded.

Traditional Methods Tree-Based A Classifiers Deep A Classifiers
(Single Molecule Regression) (XGBoost) Chemprop
Metric RF XGB CP ACLOE ACLAD ACL DACOE DACAD DAC
Accuracy 0.797 0.787 0.751 0.787 0.826 0.827 0.800 0.838 0.839
+0.058 | +0.062 | +0.070 +0.060 +0.049 +0.049 +0.057 +0.045 +0.045
F1 Score 0.797 0.787 0.751 0.786 0.826 0.827 0.798 0.838 0.838
+0.058 | +0.062 | +0.070 +0.062 +0.049 +0.049 +0.059 +0.046 +0.045
ROCAUC 0.875 0.863 0.828 0.865 0.903 0.902 0.876 0.912 0.912
+0.063 | +0.069 | +0.082 +0.065 +0.048 +0.047 +0.060 | +0.042 | +0.042

Supplementary Table 15: Ranking of Model Performance for 1x10-Fold Cross-Validation
Tested on Demilitarized Data for Non-Matching Scaffold Pairs. Average and standard
deviation of rankings of z-scores for accuracy, F1 score, and ROCAUC are presented for all

models across our 230 ICs, datasets.

| | Traditional Methods ! A Classifiers




(Single Molecule Regression) (XGBoost and Chemprop)

Metric RF XGB cpP ACL DAC
Accurac 2.961 3.778 4.796 2.089 1.376
y +0.820 +0.709 +0.596 +0.766 +0.766

F1 Score 2.941 3.774 4.8 2.098 1.387
+0.834 +0.711 +0.594 +0.785 +0.761

2.863 3.82 4.785 2.133 1.400

ROCA

OcAUC +0.830 +0.702 +0.593 +0.839 +0.761

Supplementary Table 16: Results for 1x10-Fold Cross-Validation Tested on Demilitarized
Matching Scaffold Pairs. Average and standard deviation of accuracy, F1 score, and ROCAUC
are presented for all models across our 230 1Cs, datasets. Highest statistically significant overall
performances across all models are underlined. Highest statistically significant performances

within each model family (traditional models, tree-based A classifiers, and deep A classifiers) are

bolded.
Traditional Methods Tree-Based A Classifiers Deep A Classifiers
(Single Molecule Regression) (XGBoost) Chemprop
Metric RF XGB CcP ACLOE ACLAD ACL DACOE DACAD DAC
Accuracy 0.670 0.670 0.601 0.657 0.674 0.675 0.678 0.701 0.699
+0.099 | +0.093 | +0.097 +0.087 +0.084 +0.080 +0.092 +0.085 +0.083
F1 Score 0.668 0.667 0.601 0.635 0.660 0.676 0.669 0.695 0.699
+0.101 | +0.095 | +0.097 +0.107 +0.092 +0.079 +0.102 +0.088 | #0.083
rocauc | 0733 | 0723 | 0638 0.720 0.744 0.744 0.740 0.768 0.767
$0.114 | +0.116 | +0.124 +0.108 +0.100 +0.099 +0.114 | #0.099 | #0.098

Supplementary Table 17: Ranking of Model Performance for 1x10-Fold Cross-Validation
Tested on Demilitarized Data for Matching Scaffold Pairs. Average and standard deviation of

rankings of z-scores for accuracy, F1 score, and ROCAUC are presented for all models across our

230 ICs, datasets.

Traditional Methods
(Single Molecule Regression)

Deep A Classifiers
(Chemprop)




Metric RF XGB CP ACL DAC
Accuracy 2.748 2.941 4.398 2.989 1.924
+1.149 +1.222 +1.046 +1.183 +1.190

F1 Score 2.772 2.983 4.370 2.952 1.924
+1.145 +1.236 +1.078 +1.192 +1.208

2.757 3.100 4.498 2.759 1.887
ROCAUC +1.122 +1.173 +0.981 +1.216 +1.155

Supplementary Table 18: Model Performance for Enzyme Class 1. Average and standard
deviation of accuracy, F1 score, and ROCAUC are presented for all models across our 28 1Cs,

datasets for targets in enzyme class 1. Statistically significant performances over traditional

methods are bolded.

Traditional Methods Deep A Classifiers
(Single Molecule Regression) (Chemprop)
Metric RF XGB cP ACL DAC

Accurac 0.792 0.783 0.747 0.822 0.837
¥ +0.066 +0.071 +0.069 $0.049 +0.039

F1 Score 0.792 0.783 0.747 0.823 0.837
+0.066 +0.071 +0.069 +0.049 +0.039

0.869 0.857 0.821 0.899 0.910

ROCAUC +0.071 +0.080 +0.083 +0.047 +0.035

Supplementary Table 19: Model Performance for Enzyme Class 2. Average and standard
deviation of accuracy, F1 score, and ROCAUC are presented for all models across our 69 1Cs,
datasets for targets in enzyme class 2. Statistically significant performances over traditional

methods are bolded.

Traditional Methods Deep A Classifiers
(Single Molecule Regression) (Chemprop)
Metric RF XGB CcP ACL DAC
Accuracy 0.795 0.786 0.749 0.824 0.835
+0.051 +0.052 +0.065 +0.047 +0.046
F1 Score 0.795 0.786 0.749 0.824 0.834
+0.051 +0.052 +0.065 +0.047 +0.046
ROCAUC 0.873 0.862 0.826 0.900 0.908




+0.055 +0.056 +0.077 || £0.044 +0.042

Supplementary Table 20: Model Performance for Enzyme Class 3. Average and standard
deviation of accuracy, F1 score, and ROCAUC are presented for all models across our 73 1Cs,
datasets for targets in enzyme class 3. Statistically significant performances over traditional

methods are bolded.

Traditional Methods Deep A Classifiers
(Single Molecule Regression) (Chemprop)
Metric RF XGB CP ACL DAC

Accurac 0.797 0.786 0.749 0.829 0.841
i +0.062 +0.067 +0.074 +0.043 +0.042

F1 Score 0.797 0.785 0.749 0.829 0.841
+0.062 +0.067 +0.074 +0.043 +0.042

0.876 0.862 0.825 0.906 0.915

ROCAUC +0.072 +0.079 +0.088 +0.042 +0.040

Supplementary Table 21: Model Performance for Enzyme Class 4. Accuracy, F1 score, and

ROCAUC are presented for all models across our 1 ICs, dataset for targets in enzyme class 4.

Traditional Methods Deep A Classifiers
(Single Molecule Regression) (Chemprop)

Metric RF XGB CcpP ACL DAC
Accuracy 0.808 0.798 0.788 0.871 0.879
F1 Score 0.808 0.798 0.788 0.872 0.879
ROCAUC 0.900 0.891 0.881 0.941 0.948

Supplementary Table 22: Model Performance for Enzyme Class 5. Accuracy, F1 score, and

ROCAUC are presented for all models across our 3 ICs, dataset2 for targets in enzyme class 5.

Traditional Methods Deep A Classifiers
(Single Molecule Regression) (Chemprop)
Metric RF XGB CcpP ACL DAC
Accuracy 0.781 0.777 0.788 0.860 0.866




+0.059 +0.052 +0.030 +0.029 +0.017
F1 Score 0.781 0.777 0.788 0.860 0.866
+0.059 +0.052 +0.030 +0.029 +0.017
0.864 0.858 0.871 0.931 0.939
ROCAUC +0.071 +0.070 +0.038 +0.022 +0.012

Supplementary Table 23: Related Approaches to Compare Properties of Molecular Pairs.

Approach
Siamese neural
network
Siamese neural
network
Siamese neural
network
Siamese neural
network
Siamese neural
network
Siamese neural
network
Siamese Neural
Network
Kernel-based
ranking algorithms

Learning-to-rank

framework

Learning-to-rank
framework

QSAR modeling
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