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Supplementary Figures

Supplementary Figure 1: Cross-Validation Scheme for DeltaClassifiers. Datapoints undergo 

cross-merging to generate pairs following cross-validation splits to circumvent data leakage risks. 

As such, each molecule from the original dataset only occurs in molecule pairs within the training 

or testing data splits, but never both. Additionally, if it is unknown if the property is improved 

(e.g., both molecules’ properties are denoted as ‘>’) or the difference is less than 0.1 pIC50, the 

pair is removed.



Supplementary Figure 2: Tree-based DeltaClassifier Performance Following Training with 

Only Exact Values (ΔCLOE), All Data (ΔCLAD), and Demilitarized Data (ΔCL) Tested on 

Demilitarized Data. (A) Violin plots of model performance following 1x10 cross-validation for 

230 ChEMBL datasets in terms of accuracy, F1 score, and AUC. (B) Pie charts showing percentage 

of datasets ΔCL outcompeted ΔCLOE and ΔCLAD.



Supplementary Figure 3: Tree-based DeltaClassifier Performance Compared with 

Traditional Models. Pie charts showing percentage of datasets the tree-based DeltaClassifier 

(ΔCL) outcompeted (green), exhibited a non-significant difference (gradient), or underperformed 

Random Forest (RF, red), XGBoost (XGB, black), and Chemprop (CP, blue) during 3x10-fold 

cross-validation. Statistical significance from paired t-test for three repeats (p < 0.05). Note that 

the DeltaClassifierLite is based on XGBoost. The difference is that the DeltaClassifiers run these 

algorithms in classification mode after creating paired training data while the standard 

implementations, including Random Forest and Chemprop, run in regression mode.



Supplementary Figure 4: Modified Z-Score Calculations. (A) Average modified Z-scores for 

model (Random Forest (RF), XGBoost (XGB), Chemprop (CP), tree-based DeltaClassifer (ΔCL), 

and DeltaClassifer (DΔC)) performance following 3x10 cross-validation for 230 ChEMBL 

datasets in terms of accuracy, F1 score, and AUC. (B) Median and 95% confidence interval of 

average modified z-scores. Note that the DeepDeltaClassifer uses the neural network 

implementation of Chemprop and the DeltaClassifierLite is based on XGBoost. The difference is 

that the DeltaClassifiers run these algorithms in classification mode after creating paired training 

data while the standard implementations, including Random Forest, run in regression mode.



Supplementary Figure 5: Percent of Bounded Data Correlates with ΔCL Improvement Over 

Traditional Models. Scatterplots showing correlation and Pearson’s r values of tree-based 

DeltaClassifer (ΔCL) performance improvement over Random Forest (RF), XGBoost (XGB) 

Chemprop (CP), and tree-based DeltaClassifer trained only on exact values (ΔCLOE) following 

1x10 cross-validation for 230 ChEMBL datasets with the percent of bounded data within each 

dataset in terms of accuracy, F1 score, and AUC. Note that the DeepDeltaClassifer uses the neural 



network implementation of Chemprop and the DeltaClassifierLite is based on XGBoost. The 

difference is that the DeltaClassifiers run these algorithms in classification mode after creating 

paired training data while the standard implementations, including Random Forest, run in 

regression mode.





Supplementary Figure 6: Limited Correlation of Dataset Size with Model Performance. 

Scatterplots showing correlation and Pearson’s r values of model performance following 1x10 

cross-validation for 230 ChEMBL datasets with dataset size in terms of accuracy, F1 score, and 

AUC with dataset size for Random Forest (RF), XGBoost (XGB), Chemprop (CP), tree-based 

DeltaClassifer trained on only exact data (ΔCLOE), tree-based DeltaClassifer (ΔCL), deep 

DeltaClassifer trained on only exact data (DΔCOE), and deep DeltaClassifer (DΔC). Note that the 

DeepDeltaClassifer uses the neural network implementation of Chemprop and the 

DeltaClassifierLite is based on XGBoost. The difference is that the DeltaClassifiers run these 

algorithms in classification mode after creating paired training data while the standard 

implementations, including Random Forest, run in regression mode.





Supplementary Figure 7: Comparison of DeltaClassifiers with Traditional Methods Across 

Matching or Non-Matching Scaffolds. (A) Violin plots of model performance following 1x10 

cross-validation for non-matching scaffold pairs for 230 ChEMBL datasets in terms of accuracy, 

F1-score, and ROCAUC. (B) Pie charts showing percentage of datasets our DeepDeltaClassifer 

(DΔC) outcompeted Random Forest (RF), XGBoost (XGB), Chemprop (CP), and 

DeltaClassiferLite (ΔCL) in terms of accuracy, F1-score, and ROCAUC for non-matching scaffold 

pairs. (C) Z-scores for model performance in terms of accuracy, F1 score, and ROCAUC for non-

matching scaffolds. (D) Median and 95% confidence interval of z-scores for non-matching 

scaffold pairs. (E) Modified Z-scores for model performance for non-matching scaffold pairs 

following 1x10 cross-validation for 230 ChEMBL datasets in terms of accuracy, F1 score, and 

AUC. (F) Median and 95% confidence interval of modified z-scores for non-matching scaffold 

pairs. (G) Violin plots of model performance following 1x10 cross-validation for matching 

scaffold pairs for 230 ChEMBL datasets in terms of accuracy, F1-score, and ROCAUC. (H) Pie 

charts showing percentage of datasets our DΔC outcompeted RF, XGB, CP, and ΔCL in terms of 

accuracy, F1-score, and ROCAUC for matching scaffold pairs. (I) Z-scores for model performance 

in terms of accuracy, F1 score, and ROCAUC for matching scaffold pairs. (J) Median and 95% 

confidence interval of z-scores for matching scaffold pairs. (K) Modified Z-scores for model 

performance for matching scaffold pairs following 1x10 cross-validation for 230 ChEMBL 

datasets in terms of accuracy, F1 score, and AUC. (L) Median and 95% confidence interval of 

modified z-scores for matching scaffold pairs. Note that the DeepDeltaClassifer uses the neural 

network implementation of Chemprop and the DeltaClassifierLite is based on XGBoost. The 

difference is that the DeltaClassifiers run these algorithms in classification mode after creating 



paired training data while the standard implementations, including Random Forest, run in 

regression mode.



Supplementary Figure 8: Percent of Unique Scaffolds Show Limited Correlation with DΔC 

Improvement Over Traditional Models. Scatterplots showing correlation and Pearson’s r values 

of average deep DeltaClassifer (DΔC) performance improvement over Random Forest (RF), 

XGBoost (XGB), and Chemprop (CP) following 3x10 cross-validation for 230 ChEMBL datasets 

with the percent of unique Murcko scaffolds within each dataset in terms of accuracy, F1 score, 

and AUC. 



Supplementary Figure 9: Percent of Unique Scaffolds Show Limited Correlation with ΔCL 

Improvement Over Traditional Models. Scatterplots showing correlation and Pearson’s r values 

of average tree-based DeltaClassifer (ΔCL) performance improvement over Random Forest (RF), 

XGBoost (XGB), and Chemprop (CP) following 3x10 cross-validation for 230 ChEMBL datasets 

with the percent of unique Murcko scaffolds within each dataset in terms of accuracy, F1 score, 

and AUC. 



Supplementary Figure 10: Standard Regression Approach to Classify Potency 

Improvements.



Supplementary Figure 11: DeltaClassifier Approach to Classify Potency Improvements.





Supplementary Figure 12: Removal of Pairs with Unknown Potency or Differences Below 

Demilitarization Threshold. ‘A’ represents the known potency value for the first molecule within 

the pair. ‘B’ represents the known potency value for the second molecule within the pair. ‘Δ’ 

represents the difference between ‘A’ and ‘B’. ‘D’ represents the threshold set for demilitarization. 

Rightward facing arrows indicate ‘yes’ to the scenario proposed within the diamond while 

downward facing arrows indicate ‘no’.



Supplementary Tables

Supplementary Table 1: Potency Distribution of Available IC50 Data. Percentages of exact, 

bounded, and all datapoints that are above or below 1 μM in potency and average number of unique 

scaffolds in each dataset for our 230 IC50 datasets.

Supplementary Table 2: Results for 1x10-Fold Cross-Validation Tested on Demilitarized 

Data. Average and standard deviation of accuracy, F1 score, and AUC are presented for all models 

following removal of molecular pairs with differences greater than 0.1 pIC50 in the test set across 

our 230 IC50 datasets. Highest statistically significant overall performances across all models are 

underlined. Highest statistically significant performances within each model family (traditional 

models, tree-based Δ classifiers, and deep Δ classifiers) are bolded.

Exact Bounded All
> 1 μM 63.4% 12.8% 54.4%
< 1 μM 36.6% 87.2% 45.6%

Average 
Unique 

Scaffolds
167 52 208

Traditional Methods
(Single Molecule Regression)

Tree-Based Δ Classifiers
(XGBoost)

Deep Δ Classifiers
(Chemprop)

Metric RF XGB CP ΔCLOE ΔCLAD ΔCL DΔCOE DΔCAD DΔC

Accuracy 0.795
±0.057

0.785
±0.061

0.748
±0.069

0.785
±0.059

0.824
±0.048

0.824
±0.048

0.797
±0.056

0.836
±0.045

0.836
±0.045

F1 Score 0.795
±0.057

0.785
±0.061

0.748
±0.069

0.783
±0.062

0.823
±0.048

0.824
±0.048

0.796
±0.059

0.835
±0.045

0.836
±0.045

ROCAUC 0.874
±0.063

0.861
±0.069

0.825
±0.081

0.863
±0.065

0.901
±0.048

0.901
±0.047

0.874
±0.060

0.910
±0.042

0.910
±0.042



Supplementary Table 3: Results for 1x10-Fold Cross-Validation Tested on All Datapoints. 

Average and standard deviation of accuracy, F1 score, and ROCAUC are presented for all models 

across our 230 IC50 datasets. Highest statistically significant overall performances across all 

models are underlined. Highest statistically significant performances within each model family 

(traditional models, tree-based Δ classifiers, and deep Δ classifiers) are bolded. 

Traditional Methods
(Single Molecule Regression)

Tree-Based Δ Classifiers
(XGBoost)

Deep Δ Classifiers
(Chemprop)

Metric RF XGB CP ΔCLOE ΔCLAD ΔCL DΔCOE DΔCAD DΔC

Accuracy 0.785
±0.055

0.776
±0.058

0.742
±0.065

0.770
±0.056

0.807
±0.048

0.804
±0.048

0.780
±0.054

0.817
±0.045

0.815
±0.045

F1 Score 0.780
±0.057

0.770
±0.060

0.736
±0.068

0.764
±0.060

0.803
±0.050

0.801
±0.049

0.775
±0.058

0.813
±0.047

0.812
±0.047

ROCAUC 0.857
±0.064

0.845
±0.069

0.810
±0.080

0.848
±0.065

0.886
±0.050

0.885
±0.050

0.859
±0.060

0.896
±0.046

0.895
±0.045

Supplementary Table 4: Results for 1x10-Fold Cross-Validation Tested Without Same 

Molecule Pairs. Average and standard deviation of accuracy, F1 score, and ROCAUC are 

presented for all models following removal of molecular pairs of the same molecule in the test set 

across our 230 IC50 datasets. Highest statistically significant overall performances across all 

models are underlined. Highest statistically significant performances within each model family 

(traditional models, tree-based Δ classifiers, and deep Δ classifiers) are bolded. 

Traditional Methods
(Single Molecule Regression)

Tree-Based Δ Classifiers
(XGBoost)

Deep Δ Classifiers
(Chemprop)

Metric RF XGB CP ΔCLOE ΔCLAD ΔCL DΔCOE DΔCAD DΔC

Accuracy 0.781
±0.057

0.771
±0.060

0.736
±0.067

0.772
±0.058

0.811
±0.049

0.81
±0.049

0.784
±0.055

0.822
±0.046

0.822
±0.046

F1 Score 0.780
±0.057

0.770
±0.060

0.736
±0.068

0.769
±0.061

0.809
±0.050

0.81
±0.049

0.782
±0.058

0.821
±0.047

0.821
±0.047

ROCAUC 0.861
±0.064

0.848
±0.070

0.813
±0.081

0.850
±0.066

0.889
±0.050

0.889
±0.050

0.862
±0.061

0.899
±0.045

0.898
±0.045



Supplementary Table 5: Demilitarization Parameter Optimization for 1x10-Fold Cross-

Validation Tested. Average and standard deviation of rankings of z-scores for accuracy, F1 score, 

and ROCAUC are presented for all models across our 230 IC50 datasets. Highest statistically 

significant performances across all models are underlined and bolded.

Deep Δ Classifiers
(Chemprop)

Metric 0.1 pIC50 0.5 pIC50 1.0 pIC50

Accuracy 0.815
±0.045

0.812
±0.046

0.807
±0.049

F1 Score 0.812
±0.047

0.81
±0.048

0.804
±0.05

ROCAUC 0.895
±0.045

0.893
±0.047

0.89
±0.051

Supplementary Table 6: Demilitarization Parameter Optimization for 1x10-Fold Cross-

Validation Tested Without Same Molecule Pairs. Average and standard deviation of rankings 

of z-scores for accuracy, F1 score, and ROCAUC are presented for all models across our 230 IC50 

datasets. Highest statistically significant performances across all models are underlined and 

bolded.

Deep Δ Classifiers
(Chemprop)

Metric 0.1 pIC50 0.5 pIC50 1.0 pIC50

Accuracy 0.822
±0.046

0.819
±0.047

0.814
±0.05

F1 Score 0.821
±0.046

0.819
±0.047

0.813
±0.05

ROCAUC 0.898
±0.045

0.897
±0.047

0.893
±0.051

Supplementary Table 7: Y-Shuffling Adversarial Control Experiment Collapses Model 

Performance. Average and standard deviation of accuracy, F1 score, and ROCAUC are presented 



for 1x10-fold cross-validation following Y-shuffling across our 230 IC50 datasets. Y-shuffling 

destroys the correlation between input and output variables and therefore creates a more “random” 

model with an accuracy, F1-score, and ROC-AUC close to 0.5.

Δ Classifiers (after Y-shuffling)
Metric ΔCL DΔC

Accuracy 0.554
±0.052

0.551
±0.053

F1 Score 0.544
±0.052

0.542
±0.052

ROCAUC 0.578
±0.074

0.577
±0.077

Supplementary Table 8: Ranking of Model Performance for 3x10-Fold Cross-Validation 

Tested on Demilitarized Data. Average and standard deviation of rankings of z-scores for 

accuracy, F1 score, and ROCAUC are presented for all models across our 230 IC50 datasets.

Traditional Methods
(Single Molecule Regression)

Deep Δ Classifiers
(Chemprop)

Metric RF XGB CP ΔCL DΔC

Accuracy 2.907
±0.799

3.837
±0.595

4.835
±0.560

2.130
±0.724

1.291
±0.652

F1 Score 2.913
±0.801

3.841
±0.593

4.830
±0.578

2.128
±0.716

1.287
±0.637

ROCAUC 2.857
±0.788

3.865
±0.587

4.813
±0.564

2.091
±0.839

1.374
±0.705

Supplementary Table 9: Performance of k-NN Approach Compared to DeltaClassifiers. 

Average and standard deviation of accuracy, F1 score, and ROCAUC are presented for 1x10-fold 

cross-validation following removal of molecular pairs with differences greater than 0.1 pIC50 in 

the test set across our 230 IC50 datasets. Highest statistically significant overall performances 



across all models are underlined. Statistically significant improvements compared to the k-nearest 

neighbours algorithm (k-NN) are bolded.

Parameter Free Δ Classifiers
Metric k-NN ΔCL DΔC

Accuracy 0.781
±0.064

0.824
±0.048

0.836
±0.045

F1 Score 0.780
±0.066

0.824
±0.048

0.836
±0.045

ROCAUC 0.860
±0.071

0.901
±0.047

0.910
±0.042

Supplementary Table 10: Results for 80-20 Scaffold Split on Demilitarized Data. Average and 

standard deviation of accuracy, F1 score, and ROCAUC are presented for five models across our 

230 IC50 datasets. Highest statistically significant overall performances across all models are 

underlined and bolded. 

Supplementary Table 11: Results for 80-20 Scaffold Split on All Datapoints Without 

Demilitarization. Average and standard deviation of accuracy, F1 score, and ROCAUC are 

presented for five models across our 230 IC50 datasets. Highest statistically significant overall 

performances across all models are underlined and bolded. 

Traditional Methods
(Single Molecule Regression) Δ Classifiers

Metric RF XGB CP ΔCL DΔC

Accuracy 0.730
±0.074

0.689
±0.087

0.719
±0.074

0.742
±0.071

0.766
±0.073

F1 Score 0.730
±0.074

0.689
±0.087

0.718
±0.074

0.742
±0.071

0.766
±0.072

ROCAUC 0.805
±0.086

0.753
±0.111

0.790
±0.086

0.814
±0.082

0.839
±0.084

Traditional Methods
(Single Molecule Regression) Δ Classifiers



Supplementary Table 12: Results for 80-20 Scaffold Split Without Demilitarization or Same 

Molecule Pairs. Average and standard deviation of accuracy, F1 score, and ROCAUC are 

presented for five models across our 230 IC50 datasets. Highest statistically significant overall 

performances across all models are underlined and bolded. 

Supplementary Table 13: Results for 1x10-Fold Cross-Validation Tested Without Same 

Molecule Pairs and Bounded Data. Average and standard deviation of accuracy, F1 score, and 

ROCAUC are presented for all models following removal of molecular pairs of the same molecule 

and molecular pairs incorporating a molecule with a bounded IC50 value in the test set across our 

230 IC50 datasets. Highest statistically significant overall performances across all models are 

underlined. Highest statistically significant performances within each model family (traditional 

models, tree-based Δ classifiers, and deep Δ classifiers) are bolded. 

Metric RF XGB CP ΔCL DΔC

Accuracy 0.722
±0.071

0.711
±0.070

0.684
±0.083

0.729
±0.069

0.751
±0.071

F1 Score 0.718
±0.072

0.707
±0.071

0.680
±0.084

0.728
±0.069

0.750
±0.071

ROCAUC 0.792
±0.085

0.778
±0.085

0.742
±0.107

0.802
±0.081

0.826
±0.083

Traditional Methods
(Single Molecule Regression) Δ Classifiers

Metric RF XGB CP ΔCL DΔC

Accuracy 0.719
±0.072

0.680
±0.084

0.708
±0.071

0.732
±0.070

0.754
±0.071

F1 Score 0.718
±0.072

0.680
±0.084

0.707
±0.071

0.732
±0.069

0.754
±0.071

ROCAUC 0.793
±0.085

0.743
±0.108

0.779
±0.085

0.803
±0.082

0.828
±0.084



Traditional Methods
(Single Molecule Regression)

Tree-Based Δ Classifiers
(XGBoost)

Deep Δ Classifiers
(Chemprop)

Metric RF XGB CP ΔCLOE ΔCLAD ΔCL DΔCOE DΔCAD DΔC

Accuracy 0.791
±0.047

0.784
±0.049

0.747
±0.052

0.784
±0.048

0.779
±0.052

0.779
±0.052

0.792
±0.048

0.790
±0.049

0.791
±0.049

F1 Score 0.790
±0.048

0.782
±0.050

0.746
±0.053

0.781
±0.050

0.777
±0.054

0.778
±0.053

0.790
±0.050

0.788
±0.052

0.790
±0.051

ROCAUC 0.872
±0.049

0.863
±0.052

0.827
±0.062

0.863
±0.052

0.857
±0.058

0.858
±0.057

0.871
±0.051

0.867
±0.053

0.867
±0.052

Supplementary Table 14: Results for 1x10-Fold Cross-Validation Tested on Demilitarized 

Non-Matching Scaffold Pairs. Average and standard deviation of accuracy, F1 score, and 

ROCAUC are presented for all models across our 230 IC50 datasets. Highest statistically 

significant overall performances across all models are underlined. Highest statistically significant 

performances within each model family (traditional models, tree-based Δ classifiers, and deep Δ 

classifiers) are bolded. 

Traditional Methods
(Single Molecule Regression)

Tree-Based Δ Classifiers
(XGBoost)

Deep Δ Classifiers
(Chemprop)

Metric RF XGB CP ΔCLOE ΔCLAD ΔCL DΔCOE DΔCAD DΔC

Accuracy 0.797
±0.058

0.787
±0.062

0.751
±0.070

0.787
±0.060

0.826
±0.049

0.827
±0.049

0.800
±0.057

0.838
±0.045

0.839
±0.045

F1 Score 0.797
±0.058

0.787
±0.062

0.751
±0.070

0.786
±0.062

0.826
±0.049

0.827
±0.049

0.798
±0.059

0.838
±0.046

0.838
±0.045

ROCAUC 0.875
±0.063

0.863
±0.069

0.828
±0.082

0.865
±0.065

0.903
±0.048

0.902
±0.047

0.876
±0.060

0.912
±0.042

0.912
±0.042

Supplementary Table 15: Ranking of Model Performance for 1x10-Fold Cross-Validation 

Tested on Demilitarized Data for Non-Matching Scaffold Pairs. Average and standard 

deviation of rankings of z-scores for accuracy, F1 score, and ROCAUC are presented for all 

models across our 230 IC50 datasets.

Traditional Methods Δ Classifiers



(Single Molecule Regression) (XGBoost and Chemprop)
Metric RF XGB CP ΔCL DΔC

Accuracy 2.961
±0.820

3.778
±0.709

4.796
±0.596

2.089
±0.766

1.376
±0.766

F1 Score 2.941
±0.834

3.774
±0.711

4.8
±0.594

2.098
±0.785

1.387
±0.761

ROCAUC 2.863
±0.830

3.82
±0.702

4.785
±0.593

2.133
±0.839

1.400
±0.761

Supplementary Table 16: Results for 1x10-Fold Cross-Validation Tested on Demilitarized 

Matching Scaffold Pairs. Average and standard deviation of accuracy, F1 score, and ROCAUC 

are presented for all models across our 230 IC50 datasets. Highest statistically significant overall 

performances across all models are underlined. Highest statistically significant performances 

within each model family (traditional models, tree-based Δ classifiers, and deep Δ classifiers) are 

bolded. 

Traditional Methods
(Single Molecule Regression)

Tree-Based Δ Classifiers
(XGBoost)

Deep Δ Classifiers
(Chemprop)

Metric RF XGB CP ΔCLOE ΔCLAD ΔCL DΔCOE DΔCAD DΔC

Accuracy 0.670
±0.099

0.670
±0.093

0.601
±0.097

0.657
±0.087

0.674
±0.084

0.675
±0.080

0.678
±0.092

0.701
±0.085

0.699
±0.083

F1 Score 0.668
±0.101

0.667
±0.095

0.601
±0.097

0.635
±0.107

0.660
±0.092

0.676
±0.079

0.669
±0.102

0.695
±0.088

0.699
±0.083

ROCAUC 0.733
±0.114

0.723
±0.116

0.638
±0.124

0.720
±0.108

0.744
±0.100

0.744
±0.099

0.740
±0.114

0.768
±0.099

0.767
±0.098

Supplementary Table 17: Ranking of Model Performance for 1x10-Fold Cross-Validation 

Tested on Demilitarized Data for Matching Scaffold Pairs. Average and standard deviation of 

rankings of z-scores for accuracy, F1 score, and ROCAUC are presented for all models across our 

230 IC50 datasets.

Traditional Methods
(Single Molecule Regression)

Deep Δ Classifiers
(Chemprop)



Metric RF XGB CP ΔCL DΔC

Accuracy 2.748
±1.149

2.941
±1.222

4.398
±1.046

2.989
±1.183

1.924
±1.190

F1 Score 2.772
±1.145

2.983
±1.236

4.370
±1.078

2.952
±1.192

1.924
±1.208

ROCAUC 2.757
±1.122

3.100
±1.173

4.498
±0.981

2.759
±1.216

1.887
±1.155

Supplementary Table 18: Model Performance for Enzyme Class 1. Average and standard 

deviation of accuracy, F1 score, and ROCAUC are presented for all models across our 28 IC50 

datasets for targets in enzyme class 1. Statistically significant performances over traditional 

methods are bolded.

Traditional Methods
(Single Molecule Regression)

Deep Δ Classifiers
(Chemprop)

Metric RF XGB CP ΔCL DΔC

Accuracy 0.792
±0.066

0.783
±0.071

0.747
±0.069

0.822
±0.049

0.837
±0.039

F1 Score 0.792
±0.066

0.783
±0.071

0.747
±0.069

0.823
±0.049

0.837
±0.039

ROCAUC 0.869
±0.071

0.857
±0.080

0.821
±0.083

0.899
±0.047

0.910
±0.035

Supplementary Table 19: Model Performance for Enzyme Class 2. Average and standard 

deviation of accuracy, F1 score, and ROCAUC are presented for all models across our 69 IC50 

datasets for targets in enzyme class 2. Statistically significant performances over traditional 

methods are bolded.

Traditional Methods
(Single Molecule Regression)

Deep Δ Classifiers
(Chemprop)

Metric RF XGB CP ΔCL DΔC

Accuracy 0.795
±0.051

0.786
±0.052

0.749
±0.065

0.824
±0.047

0.835
±0.046

F1 Score 0.795
±0.051

0.786
±0.052

0.749
±0.065

0.824
±0.047

0.834
±0.046

ROCAUC 0.873 0.862 0.826 0.900 0.908



±0.055 ±0.056 ±0.077 ±0.044 ±0.042

Supplementary Table 20: Model Performance for Enzyme Class 3. Average and standard 

deviation of accuracy, F1 score, and ROCAUC are presented for all models across our 73 IC50 

datasets for targets in enzyme class 3. Statistically significant performances over traditional 

methods are bolded.

Traditional Methods
(Single Molecule Regression)

Deep Δ Classifiers
(Chemprop)

Metric RF XGB CP ΔCL DΔC

Accuracy 0.797
±0.062

0.786
±0.067

0.749
±0.074

0.829
±0.043

0.841
±0.042

F1 Score 0.797
±0.062

0.785
±0.067

0.749
±0.074

0.829
±0.043

0.841
±0.042

ROCAUC 0.876
±0.072

0.862
±0.079

0.825
±0.088

0.906
±0.042

0.915
±0.040

Supplementary Table 21: Model Performance for Enzyme Class 4. Accuracy, F1 score, and 

ROCAUC are presented for all models across our 1 IC50 dataset for targets in enzyme class 4. 

Traditional Methods
(Single Molecule Regression)

Deep Δ Classifiers
(Chemprop)

Metric RF XGB CP ΔCL DΔC
Accuracy 0.808 0.798 0.788 0.871 0.879
F1 Score 0.808 0.798 0.788 0.872 0.879
ROCAUC 0.900 0.891 0.881 0.941 0.948

Supplementary Table 22: Model Performance for Enzyme Class 5. Accuracy, F1 score, and 

ROCAUC are presented for all models across our 3 IC50 dataset2 for targets in enzyme class 5. 

Traditional Methods
(Single Molecule Regression)

Deep Δ Classifiers
(Chemprop)

Metric RF XGB CP ΔCL DΔC
Accuracy 0.781 0.777 0.788 0.860 0.866



±0.059 ±0.052 ±0.030 ±0.029 ±0.017

F1 Score 0.781
±0.059

0.777
±0.052

0.788
±0.030

0.860
±0.029

0.866
±0.017

ROCAUC 0.864
±0.071

0.858
±0.070

0.871
±0.038

0.931
±0.022

0.939
±0.012

Supplementary Table 23: Related Approaches to Compare Properties of Molecular Pairs. 

Approach Predictive Target Citation
Siamese neural 

network Molecular similarity M. K. Altalib and N. Salim, ACS Omega, 2022, 7, 4769–4786.

Siamese neural 
network Bioactivity D. Fernández-Llaneza, S. Ulander, D. Gogishvili, E. Nittinger, H. Zhao and C. 

Tyrchan, ACS Omega, 2021, 6, 11086–11094.
Siamese neural 

network Toxicity H. Altae-Tran, B. Ramsundar, A. S. Pappu and V. Pande, ACS Cent Sci, 2017, 3, 
283–293.

Siamese neural 
network

Drug-drug 
interactions

K. Schwarz, A. Allam, N. A. Perez Gonzalez and M. Krauthammer, BMC 
Bioinformatics, 2021, 22, 1–19.

Siamese neural 
network

Relative free energy 
of binding A. T. McNutt and D. R. Koes, J Chem Inf Model, 2022, 62, 1819–1829.

Siamese neural 
network

Transcriptional 
response similarity

M. Jeon, D. Park, J. Lee, H. Jeon, M. Ko, S. Kim, Y. Choi, A.-C. Tan and J. Kang, 
Bioinformatics, 2019, 35, 5249–5256.

Siamese Neural 
Network ADMET properties Y. Zhang, J. Menke, J. He, E. Nittinger, C. Tyrchan, O. Koch and H. Zhao, J 

Cheminform, 2023, 15, 75.
Kernel-based 

ranking algorithms Potency S. Agarwal, D. Dugar and S. Sengupta, J Chem Inf Model, 2010, 50, 716–731.

Learning-to-rank 
framework Potency

K. L. Saar, W. McCorkindale, D. Fearon, M. Boby, H. Barr, A. Ben-Shmuel, C. M. 
Consortium, N. London, F. von Delft and J. D. Chodera, Proceedings of the 

National Academy of Sciences, 2023, 120, e2214168120.

Learning-to-rank 
framework Potency

A. Morris, W. McCorkindale, N. Drayman, J. D. Chodera, S. Tay, N. London and 
Covid Moonshot Consortium, Chemical Communications, 2021, 57, 5909–

5912.
QSAR modeling Potency K. Matsumoto, T. Miyao and K. Funatsu, ACS Omega, 2021, 6, 11964–11973.


