Enhancing outer membrane permeability of tetracycline antibiotics in *P. aeruginosa* using TOB-CIP conjugates

Shiv Dhiman^{a†}, Danyel Ramirez^{a†}, Rajat Arora^a, Gilbert Arthur^b, and Frank Schweizer^{a,c*}

^aDepartment of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

^bDepartment of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada

^cDepartment of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada

† These authors equally contributed to this work.

*Corresponding author

Email: Frank.Schweizer@umanitoba.ca

Table of contents

1	Table S1. Antibacterial activity of 1a, PMBN, and multiple antibiotics against	S2
	MDR P. aeruginosa in CAMHB.	
2	Table S2. Combination studies of compounds 1a with tetracyclines against	S2-3
	Gram-negative bacteria in CAMHB.	
3	Table S3. Combination studies of compounds 1a with novobiocin and	S 3
	rifampicin against Gram-negative bacteria in CAHMB.	
4	Table S4. MIC of eravacycline against P. aeruginosa PAO1 in varying	S4
	concentrations of fetal bovine serum.	
5	Table S5-S8. HPLC methodology and chromatograms of compounds $1a - d$.	S5-S12
6	Figure S1. Fold potentiation of minocycline by PMBN against P. aeruginosa	S13
	PAO1 in CAMHB and Mg ²⁺ -supplemented CAMHB.	
7	Synthetic procedures and characterizations of compounds $4 - 7$.	S13-19
8	Synthesis, procedure, and characterizations of compounds $2 - 3$ and $9 - 10$	S19-21
9	Figure S2-S31. NMR spectra of compounds 1 – 10.	S22-51
10	References	S52

P. aeruginosa	Minim	um Inhibito	ory Conc	entration	(MIC)	(µg/mL)				
Strain	1a	PMBN	MIN	DOX	TIG	ERV	CAZ	ATM	тов	LVX
PAO1	>128	16-32	32	64	32	>8	2	4	2	0.5
PA259	>128	16	128	64	32	32	512	32	512	>256
PA262	>128	>128	256	>512	64	64	16	32	1024	64
PA264	>128	8	128	>64	32	32	128	64	128	64
PA114228	>128	>128	256	64	64	16	8	32	2	4
PA200	32	8	0.5	1	1	0.5	2	0.25	0.5	0.031
PA095	8	2	64	64	32	32	>64	>64	>16	8
PA100036	>128	16	128	>128	64	32	8	16	64	128
PA101243	>128	>128	8	16	8	8	64	64	128	8

 Table S1. Antibacterial activity of hybrid 1a, PMBN and tetracycline antibiotics in MDR-P.

 aeruginosa with CA-MHB

PMBN = polymyxin B nonapeptide; MIN = minocycline, DOX = doxycycline, and ERV = eravacycline; MDR strains = PA259, PA262, PA264, PA100036; Colistin-resistant strains = PA114228 and PA101243; Cystic fibrosis PA095 (non-mucoid); Effux pump deficient strain = PA200. Broth microdilution assay was performed in biological duplicates.

Table S2. Combination studies of hybrid **1a** with tetracyclines against Gram-negative bacteria inCAMHB.

GNB Organism	AB	MIC 1a [MICcombo] (µg/mL)	MICAB [MICcombo] (µg/mL)	FICI	Interpretation	Absolute MIC (μg/mL) ^a	Fold Potentiation ^b
	MIN	>128 [4]	128 [4]	0.0312 <x<0.062< td=""><td>Synergy</td><td>4</td><td>32</td></x<0.062<>	Synergy	4	32
E. coli	DOX	>128 [0.25]	64 [32]	0.5 <x<0.562< td=""><td>Additive</td><td>32</td><td>2</td></x<0.562<>	Additive	32	2
EC107115	TIG	>128 [0.25]	1 [1]	1 <x<1.02< td=""><td>Additive</td><td>1</td><td>1</td></x<1.02<>	Additive	1	1
	ERV	>128 [0.25]	1 [1]	1 <x<1.02< td=""><td>Additive</td><td>1</td><td>1</td></x<1.02<>	Additive	1	1
	MIN	>128 [8]	64 [8]	0.125 <x<0.1875< td=""><td>Synergy</td><td>8</td><td>8</td></x<0.1875<>	Synergy	8	8
<i>E. coli</i> EC94474	DOX	>128 [2]	128 [64]	0.5 <x<0.515< td=""><td>Additive</td><td>64</td><td>2</td></x<0.515<>	Additive	64	2
	TIG	>128 [2]	2 [1]	0.5 <x<0.515< td=""><td>Additive</td><td>1</td><td>2</td></x<0.515<>	Additive	1	2
	ERV	>128 [0.25]	1 [1]	1 <x<1.02< td=""><td>Additive</td><td>1</td><td>1</td></x<1.02<>	Additive	1	1
A. baumannii	MIN	>128 [0.25]	2 [1]	0.5 <x<0.502< td=""><td>Additive</td><td>1</td><td>2</td></x<0.502<>	Additive	1	2
AB031	DOX	>128 [0.25]	32 [16]	0.5 <x<0.502< td=""><td>Additive</td><td>16</td><td>2</td></x<0.502<>	Additive	16	2

TIG	>128 [1]	8 [4]	0.5 <x<0.508< th=""><th>Additive</th><th>4</th><th>2</th></x<0.508<>	Additive	4	2
ERV	>128 [0.25]	2 [1]	0.5 <x<0.502< td=""><td>Additive</td><td>1</td><td>2</td></x<0.502<>	Additive	1	2

GNB = Gram-negative bacteria; AB = antibiotics; MIN = minocycline, DOX = doxycycline, and ERV = eravacycline; FICI = fractional inhibitory concentration index; MDR strains =*E. coli*EC107115 and*A. baumannii*AB031; Colistin-resistant strains =*E. coli*EC94474. The checkerboard assay was performed in biological duplicates.

Table S3. Combination studies of compounds 1a with novobiocin and rifampicin against Gramnegative bacteria in CAMHB.

GNB Organism	AB	MIC 1a [MIC _{combo}] (µg/mL)	MICAB [MICcombo] (µg/mL)	FICI	Interpretation	Absolute MIC (µg/mL) ^a	Fold Potentiation ^b
P. aeruginosa	NOV	>128 [8]	1024 [4]	0.0039 <x<0.066< td=""><td>Synergy</td><td>4</td><td>256-fold</td></x<0.066<>	Synergy	4	256-fold
PA01	RIF	>128 [8]	32 [0.0312]	0.00097 <x<0.063< td=""><td>Synergy</td><td>0.0312</td><td>1024-fold</td></x<0.063<>	Synergy	0.0312	1024-fold
P. aeruginosa	NOV	>128 [8]	2048 [4]	0.002 <x<0.064< td=""><td>Synergy</td><td>4</td><td>512-fold</td></x<0.064<>	Synergy	4	512-fold
PA259	RIF	>128 [4]	32 [0.0625]	0.02 <x<0.33< td=""><td>Synergy</td><td>0.062</td><td>512-fold</td></x<0.33<>	Synergy	0.062	512-fold
P. aeruginosa	NOV	>128 [8]	2048 [8]	0.004 <x<0.066< td=""><td>Synergy</td><td>8</td><td>256-fold</td></x<0.066<>	Synergy	8	256-fold
PA262	RIF	>128 [8]	512 [16]	0.062 <x<0.093< td=""><td>Synergy</td><td>16</td><td>32-fold</td></x<0.093<>	Synergy	16	32-fold
P. aeruginosa	NOV	>128 [8]	1024[2]	0.002 <x<0.064< td=""><td>Synergy</td><td>2</td><td>512-fold</td></x<0.064<>	Synergy	2	512-fold
PA264	RIF	>128 [8]	32 [0.125]	0.004 <x<0.035< td=""><td>Synergy</td><td>0.125</td><td>256-fold</td></x<0.035<>	Synergy	0.125	256-fold
P. aeruginosa	NOV	>128 [8]	2048 [2048]	1 <x<1.062< td=""><td>Additive</td><td>2048</td><td>1-fold</td></x<1.062<>	Additive	2048	1-fold
PA114228	RIF	>128[4]	32 [16]	0.5 <x<0.531< td=""><td>Additve</td><td>16</td><td>2-fold</td></x<0.531<>	Additve	16	2-fold
A. baumannii	NOV	>128 [8]	>16 [1]	0.062 <x<0.125< td=""><td>Synergy</td><td>1</td><td>16-fold</td></x<0.125<>	Synergy	1	16-fold
ATCC 17978	RIF	>128 [8]	>4 [0.125]	0.031 <x<0.093< td=""><td>Synergy</td><td>0.125</td><td>32-fold</td></x<0.093<>	Synergy	0.125	32-fold
A. baumannii	NOV	>128 [8]	>16 [16]	1 <x<1.06< td=""><td>Additive</td><td>16</td><td>1-fold</td></x<1.06<>	Additive	16	1-fold
AB027	RIF	>128[8]	2 [0.062]	0.031 <x<0.062< td=""><td>Synergy</td><td>0.062</td><td>32-fold</td></x<0.062<>	Synergy	0.062	32-fold
A. baumannii	NOV	>128 [8]	>16 [16]	1 <x<1.06< td=""><td>Additve</td><td>16</td><td>1-fold</td></x<1.06<>	Additve	16	1-fold
AB031	RIF	>128[8]	4 [0.25]	0.06 <x<0.125< td=""><td>Synergy</td><td>0.25</td><td>16-fold</td></x<0.125<>	Synergy	0.25	16-fold
A. baumannii	NOV	>128 [8]	16 [2]	0.125 <x<0.187< td=""><td>Synergy</td><td>2</td><td>8-fold</td></x<0.187<>	Synergy	2	8-fold
AB92247	RIF	>128[8]	1 [0.125]	0.125 <x<0.187< td=""><td>Synergy</td><td>0.125</td><td>8-fold</td></x<0.187<>	Synergy	0.125	8-fold
E. coli	NOV	>128 [4]	256 [16]	0.062 <x<0.093< td=""><td>Synergy</td><td>4</td><td>16-fold</td></x<0.093<>	Synergy	4	16-fold
ATCC 25922	RIF	>128 [4]	8 [2]	0.25 <x<0.281< td=""><td>Synergy</td><td>2</td><td>4-fold</td></x<0.281<>	Synergy	2	4-fold
E. coli	NOV	>128 [1]	512 [32]	0.062 <x<0.070< td=""><td>Synergy</td><td>32</td><td>16-fold</td></x<0.070<>	Synergy	32	16-fold
EC107115	RIF	>128 [2]	64 [2]	0.031 <x<0.046< td=""><td>Synergy</td><td>2</td><td>32-fold</td></x<0.046<>	Synergy	2	32-fold
E. coli	NOV	>128 [2]	256 [64]	0.25 <x<0.312< td=""><td>Synergy</td><td>64</td><td>4-fold</td></x<0.312<>	Synergy	64	4-fold
EC94474	RIF	>128 [8]	8 [4]	0.50 <x<0.562< td=""><td>Additive</td><td>4</td><td>2-fold</td></x<0.562<>	Additive	4	2-fold

GNB = Gram-negative bacteria; NOV = novobiocin, RIF = rifampicin, FICI = fractional inhibitory concentration index; Wild-type isolates =*P. aeruginosa*PAO1,*E. coli*ATCC 25922,*A.*

baumannii ATCC 17978; MDR strains = *P. aeruginosa* PA259, PA262, PA264; *E. coli* EC107115; *A. baumannii* AB027, and AB031; Colistin-resistant strains = *P. aeruginosa* PA114228, *E. coli* EC94474, and *A. baumannii* AB92247. The checkerboard assay was performed in biological duplicates.

Table S4. MIC of eravacycline (ERV) against *P. aeruginosa* PAO1 in varying concentrations of fetal bovine serum (FBS).

% FBS	MIC of ERV (µg/mL)
0%	8
5%	16
10%	32
25%	128
50%	128

HPLC Analysis

HPLC methodology:

Method-1: SynergyTM 2.5 µm Polar-RP 100 Å, LC column 50 x 2 mm (Phenomenex)

Buffer A: 0.1% TFA in water; Buffer B: 0.1% TFA in acetonitrile

Flow rate: 0.2 ml/min; run time: 20 min; UV-Visible detection at 275nm and 280

Time duration (min)	% Buffer A	% Buffer B
0	85	15
3	85	15
4	80	20
6	80	20
7	70	30
9	70	30
10	60	40
13	60	40
14	50	50
15	50	50
18	85	15
20	85	15

 Table S5: Gradient used for method-1

Method-2: SynergyTM 2.5 μm Polar-RP 100 Å, LC column 50 x 2 mm (Phenomenex) Buffer A: 0.1% TFA in water; Buffer B: 0.1% TFA in acetonitrile Flow rate: 0.2 ml/min; run time: 20 min; UV-Visible detection at 280

Time duration (min)	% Buffer A	% Buffer B
0	90	10
3	90	10
4	85	15
6	85	15
7	80	20
8	80	20
8.5	70	30
9	50	50
12	50	50
12.5	70	30
13	80	20
14	80	20
15	85	15
16	85	15
17	90	10
20	90	10

 Table S6: Gradient used for method-2

Method-3: SynergyTM 2.5 μ m Polar-RP 100 Å, LC column 50 x 2 mm (Phenomenex)

Buffer A: 0.1% TFA in water; Buffer B: 0.1% TFA in acetonitrile

Flow rate: 0.1 ml/min; run time: 20 min; UV-Visible detection at 280 nm and 275 nm

Time duration (min)	% Buffer A	% Buffer B
0	90	10
3	90	10
4	85	15
6	85	15
8	80	20
9	70	30
10	40	60
12	40	60
13	70	30
14	80	20
15	85	15
16	85	15
17	90	10
20	90	10

 Table S7: Gradient used for method-3

Method-4: SynergyTM 2.5 μm Polar-RP 100 Å, LC column 50 x 2 mm (Phenomenex) Buffer A: 0.1% TFA in water; Buffer B: 0.1% TFA in acetonitrile Flow rate: 0.1 ml/min; run time: 20 min; UV-Visible detection at 265

Time duration (min)	% Buffer A	% Buffer B
0	90	10
3	90	10
4	85	15
6	85	15
8	80	20
9	70	30
10	30	70
12	30	70
13	70	30
14	80	20
15	85	15
16	85	15
17	90	10
20	90	10

Table S8: Gradient used for method-4

Chromatogram and Results						
Sample Name:	Compound 1a	Run Time (min):	20:00			
Instrument Method:	Method-1	Channel:	UV-VIS-4			
Injection date/Time:	09/Mar/23 11:01	Wavelength (nm):	275			

C No	Retention Time	Area	Height	Relative Area
5.100	(min)	(mAU*min)	(mAU)	(%)
1	9.750	285.535	737.929	99.08
2	10.500	2.638	8.006	0.92

Chromatogram and Results			
Sample Name:	Compound 1b	Run Time (min):	20:00
Instrument Method:	Method-2	Channel:	UV-VIS-4
Injection date/Time:	06/Apr/23 16:48	Wavelength (nm):	280

S.N.	Retention Time	Area	Height	Relative Area
5.100	(min)	(mAU*min)	(mAU)	(%)
1	9.313	0.926	2.760	0.30
2	10.063	1.599	7.132	0.52
3	10.563	301.268	783.138	97.74
4	11.396	3.700	11.329	1.20
5	12.729	0.727	2.027	0.24

Chromatogram and Results			
Sample Name:	Compound 1c	Run Time (min):	20:00
Instrument Method:	Method-4	Channel:	UV-VIS-2
Injection date/Time:	22/Sep/23 13:47	Wavelength (nm):	265

S No	Retention Time	Area	Height	Relative Area
5.100	(min)	(mAU*min)	(mAU)	(%)
1	9.292	1.152	2.978	0.92
2	10.375	123.188	284.337	98.05
3	12.959	1.303	3.005	1.04

Chromatogram and Results			
Sample Name:	SD-319	Run Time (min):	20:00
Instrument Method:	Method-3	Channel:	UV-VIS-4
Injection date/Time:	22/Sep/23 15:50	Wavelength (nm):	280

S.No	Retention Time	Area	Height	Relative Area
	(min)	(mAU*mın)	(mAU)	(%)
1	9.396	1.999	5.713	0.35
2	10.896	571.724	1285.659	99.30
3	11.729	1.367	5.255	0.24
4	12.563	0.687	2.330	0.12

Figure S1. Fold potentiation of minocycline by PMBN against *P. aeruginosa* PAO1 in CAMHB and Mg²⁺ supplemented CAMHB. The checkerboard assay was performed in biological duplicates.

Synthetic procedures and characterizations of compounds 4-7.

Synthesis and characterization of 1, 3, 2', 6', 3"-penta-*N*-Boc- 4', 2", 4", 6"-tetra-*O*-TBDMStobramycin (4).¹

To solution of tobramycin (5.0 g, 10.69 mmol), water (70 mL), and methanol (MeOH) (140 mL) was added Boc-anhydride (23.34 g, 107 mmol) followed by trimethylamine (32.82 mL, 235 mmol) at ambient temperature. After addition, the mixture was heated at 55 °C for 16 h. After the consumption tobramycin, solvent was evaporated from the reaction mixture under reduced pressure and dried under high vacuum for 24h to obtain crude Boc-protected tobramycin as a white solid in quantitative yield (10.23 g, 99%) and used in the next step without further purification. An oven-dried round bottom flask (RBF) was charged with crude Boc-protected tobramycin (9.0 g, 9.29 mmol) and dry *N*,*N*-dimethylformamide (DMF) (15 mL) and stirred at ambient temperature under nitrogen atmosphere. Then TBDMS-Cl (14.01 g, 92.97 mmol) was added portion-wise followed by 1-methylimidazole (11.43 ml, 139.46 mmol) dropwise. After addition, the mixture was continuously stirred for 4 days. After completion, DMF was evaporated under reduced pressure, and resulting residue was dissolved in ethyl acetate (500 mL), washed with ice-cold water (x2) and then washed with brine solution. The collected organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), filtered, and concentrated to obtain the crude compound as an off-white

solid. The crude compound was purified by flash column chromatography using P60 silica gel and the pure compound was eluted in 12-15% ethyl acetate:hexanes (EtOAc:Hex) (v/v) to give desired product **4** (11.50 g, 77%) as a crystalline white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.40 (s, 1H), 5.26 (s, 1H), 4.99 – 4.90 (m, 2H), 4.51 (s, 1H), 4.32 (s, 1H), 3.88 – 3.83 (m, 2H), 3.70 – 3.14 (m, 13H), 2.74 – 2.72 (m, 1H), 2.04– 2.02 (m, 1H), 1.45 – 1.42 (m, 45H, Boc-'Bu), 0.92 – 0.87 (m, 36H, TBDMS-'Bu), 0.13 – 0.05 (m, 24H, TBDMS-SiMe₂). MALDI TOF-MS *m/e* [M+Na]⁺ calcd for C₆₇H₁₃₃N₅O₁₉Si₄Na⁺, 1446.8564; observed 1446.7999.

General procedure C for C₅-*O*- alkylation of 1, 3, 2', 6', 3"-penta-*N*-Boc- 4', 2", 4", 6"-tetra-*O*-TBDMS-tobramycin (5a-d).¹

To a solution of compound 4 (1 equiv.) and toluene (2 mL) were added potassium hydroxide (3 equiv.), tetrabutylammonium hydrogen sulfate (TBAHS) (0.1 equiv.), 1,*n*-dibromoalkylating reagent (3 equiv.) and catalytic amount of water (2-3 drops). The mixture was continuously stirred at ambient temperature for 20 h. After completion the reaction, toluene was evaporated under reduced pressure. The resulting residue was diluted with ethyl acetate (100 mL), washed with water (50 mL) and then brine solution (30 mL). The collected organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated to obtain the crude compound as an off-white solid. The crude compound was then purified by flash column chromatography using P60 silica gel and the pure compound was eluted in 10-12% EtOAc:Hex (v/v) to afford desired product **5a-d** (52-76%) as a crystalline white solid.

5-*O*-(12-bromododecyl)-1, 3, 2′, 6′, 3″-penta-*N*-Boc-4′, 2″, 4″, 6″-tetra-*O*-TBDMS-tobramycin (5a).

This compound was synthesized by following general procedure C using compound 4 (1 g, 0.701 mmol), 1, 12-dibromooctane (0.690 g, 2.1 mmol), potassium hydroxide (0.118 g, 2.1 mmol), tetrabutylammonium hydrogen sulfate (TBAHS) (0.023 g, 0.07 mmol), and toluene (3 mL) to give desired product **5a** (0.841 g, 70%) as a crystalline white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.21 (s, 1H), 5.15 (s, 1H), 5.06 – 5.04 (m, 1H), 4.77 (s, 1H), 4.50 (s, 1H), 4.26 (s, 1H), 4.17 – 4.13 (m, 1H), 4.08 – 4.06 (m, 1H), 3.81 – 3.68 (m, 4H), 3.65 – 3.48 (m, 5H), 3.41 – 3.33 (m, 4H), 3.27 – 3.17 (m, 3H), 2.48 – 2.45 (m, 1H), 2.02 – 1.98 (m, 1H), 1.88 – 1.82 (m, 2H), 1.57 – 1.53 (m, 2H), 1.45 – 1.41 (m, 45H, Boc-'Bu), 1.31 – 1.23 (m, 18H, CH₂ linker), 0.94 – 0.86 (m, 36H, TBDMS-

^{*t*}Bu), 0.15 – 0.02 (m, 24H, TBDMS-SiMe₂). MALDI TOF-MS m/e [M+Na]⁺ calcd for C₇₉H₁₅₆BrN₅O₁₉Si₄Na⁺, 1692.9547; observed m/e, 1692.9785.

Synthesis and characterization of 5-*O*-(8-bromooctyl)-1, 3, 2', 6', 3"-penta-*N*-Boc- 4', 2", 4", 6"-tetra-*O*-TBDMS-tobramycin (5b).

This compound was synthesized by following general procedure C using compound **9** (1 g, 0.701 mmol), 1,8-dibromooctane (0.572 g, 2.1 mmol), potassium hydroxide (0.118 g, 2.1 mmol), tetrabutylammonium hydrogen sulfate (TBAHS) (0.023 g, 0.07 mmol), and toluene (3 mL) to give desired product **10** (0.862 g, 76%) as a crystalline white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.22 (s, 1H), 5.14 (s, 1H), 5.03 – 5.01 (m, 1H), 4.76 (s, 1H), 4.50 (s, 1H), 4.24 (s, 1H), 4.15 (s, 1H), 4.08 (s, 1H), 3.82 – 3.68 (m, 4H), 3.62 – 3.53 (m, 5H), 3.43 – 3.34 (m, 4H), 3.27 – 3.20 (m, 3H), 2.48 – 2.45 (m, 1H), 2.02 – 1.98 (m, 1H), 1.87 – 1.81 (m, 2H), 1.56 – 1.41 (m, 49H, Boc-'Bu and CH₂ linker), 1.31 – 1.27 (m, 6H, CH₂ linker), 0.94 – 0.86 (m, 36H, TBDMS-'Bu), 0.15 – 0.02 (m, 24H, TBDMS-SiMe₂). MALDI TOF-MS *m*/*e* [M+Na]⁺ calcd for C₇₅H₁₄₈BrN₅O₁₉Si₄Na⁺, 1636.8921; observed 1636.9015.

5-*O*-(2-bromo-PEG3)-1, 3, 2′, 6′, 3″-penta-*N*-Boc-4′, 2″, 4″, 6″-tetra-*O*-TBDMS-tobramycin (5c).

This compound was synthesized by following general procedure C using compound **4** (0.600g, 0.421 mmol), bromo-PEG3-bromide (0.404 g, 1.26 mmol), potassium hydroxide (0.071 g, 1.26 mmol), tetrabutylammonium hydrogen sulfate (TBAHS) (0.014 g, 0.042 mmol), and toluene (3 mL) to give desired product **5c** (0.368 g, 52%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 5.31 (s, 1H), 5.17 (s, 2H), 4.76 (s, 1H), 4.51 (s, 1H), 4.18 – 4.03 (m, 3H), 3.79 (d, *J* = 6.4 Hz, 2H), 3.77 – 3.72 (m, 2H), 3.69 – 3.50 (m, 16H), 3.46 (t, *J* = 6.4 Hz, 2H), 3.42 – 3.24 (m, 4H), 3.11 (s, 1H), 2.45 – 2.43 (m, 1H), 1.96 – 1.94 (m, 1H), 1.58 – 1.39 (m, 46H, Boc-'Bu), 0.93 – 0.86 (m, 36H, TBDMS-'Bu), 0.15 – -0.02 (m, 24H, TBDMS-SiMe₂); ¹³C NMR (125 MHz, CDCl₃) δ 155.46, 154.81, 154.65, 96.31, 92.08, 85.44, 79.84, 79.38, 79.25, 78.93, 75.13, 72.51, 71.98, 71.42, 71.18, 70.89, 70.54, 70.50, 70.45, 70.29, 68.18, 67.22, 63.24, 57.22, 50.54, 49.06, 48.39, 41.72, 36.63, 36.07, 35.45, 30.23, 28.62, 28.49, 28.44, 26.11, 26.01, 25.98, 25.80, 24.67, 23.37, 18.50, 18.29, 18.07, 17.93, -3.50, -3.78, -4.18, -4.84, -4.91, -5.04, -5.13, -5.19. MALDI TOF-MS *m/e* [M+Na]⁺ calcd for C₇₅H₁₄₈BrN₅O₂₂Si₄Na⁺, 1684.8769; observed *m/e*, 1684.9650.

5-*O*-((4-bromomethyl)biphenyl)-1, 3, 2', 6', 3"-penta-*N*-Boc-4', 2", 4", 6"-tetra-*O*-TBDMS-tobramycin (5d).

This compound was synthesized by following general procedure C using compound **4** (0.584 g, 0.409 mmol), 4,4-bis(bromomethyl)biphenyl (0.417 g, 1.22 mmol), potassium hydroxide (0.069 g, 1.22 mmol), tetrabutylammonium hydrogen sulfate (TBAHS) (0.014 g, 0.041 mmol), and toluene (2 mL) to give desired product **5d** (0.764 g, 65%) as a crystalline white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, *J* = 7.9 Hz, 2H), 7.49 – 7.43 (m, 6H), 5.35 (s, 1H), 5.24 – 5.23 (m, 2H), 5.11 – 5.10 (m, 1H), 5.00 (s, 1H), 4.83 (s, 1H), 4.63 – 4.50 (m, 4H), 4.29 – 4.24 (m, 2H), 3.87 – 3.85 (m, 2H), 3.73 – 3.58 (m, 5H), 3.52 – 3.48 (m, 1H), 3.45 – 3.32 (m, 4H), 3.18 (s, 1H), 2.53 – 2.51 (m, 1H), 2.03 – 2.01 (m, 1H), 1.59 – 1.25 (m, 46H, Boc-'Bu), 0.98 – 0.81 (m, 36H, TBDMS-'Bu), 0.15 – -0.11 (m, 24H, TBDMS-SiMe₂); ¹³C NMR (125 MHz, CDCl₃) δ 155.64, 154.81, 154.63, 141.30, 139.55, 137.23, 136.55, 129.42, 129.15, 127.42, 126.95, 98.23, 96.22, 85.76, 79.95, 79.44, 79.08, 78.54, 75.75, 74.44, 72.62, 71.52, 68.02, 67.14, 63.66, 57.42, 50.50, 48.90, 48.34, 41.61, 35.98, 35.63, 33.39, 28.62, 28.52, 28.49, 28.26, 26.12, 26.04, 25.95, 25.78, 18.42, 18.31, 18.11, 17.92, -3.33, -3.61, -4.23, -4.92, -5.20, -5.27. MALDI TOF-MS *m/e* [M+Na]⁺ calcd for C₈₁H₁₄₄BrN₅O₁₉Si₄Na⁺, 1704.8608; observed 1704.8703.

General procedure D for preparation of terminal amine-tethered 1, 3, 2', 6', 3"-penta-*N*-Boc- 4', 2", 4", 6"-tetra-*O*-TBDMS-tobramycin (6a-d).²

An oven-dried clean RBF was charged with bromoalkylated tobramycin (**5a-d**) (1.0 equiv.), sodium azide (20 equiv.), dry DMF (5 mL) and mixture was stirred and heated up to 90 °C for 5 h. After completion, DMF was evaporated, and resulting residue was diluted with ethyl acetate (100 mL), washed with ice-cold water (x2) followed with brine solution. The collected organic layer, dried over anhydrous Na₂SO₄, filtered, and concentrated to obtain the crude azido compound as an off-white solid which was used in the next step without further purification. The azido intermediate (1.0 equiv.) was dissolved in methanol (20 mL) and then Pd(OH)₂/C (0.1 equiv., 20 wt% loading) was added. The mixture was stirred under H₂-gas balloon at ambient temperature for 5 h. After completion, resulting reaction mixture was filtered through a celite bed, washed with methanol (x2), and concentrated the filterate. The crude compound was purified by flash column

chromatography (P60 silica gel) and the pure compound and was eluted in 5-10% methanol:dichloromethane (MeOH:DCM) (v/v) to give corresponding amino appended tobramycin derivatives (**6a-d**) as white solid (62-77%).

5-*O*-(12-aminododecyl)-1, 3, 2', 6', 3"-penta-*N*-Boc-4',2",4",6"-tetra-*O*-TBDMS-tobramycin (6a).

Compound 18 was synthesized by follow general procedure D using compound **5a** (0.780 g, 0.466 mmol), NaN₃ (0.606 g, 9.33), Pd(OH)₂/C (0.033 g, 0.047 mmol, 20 wt% loading) and obtained the pure product **6a** (0.590 g, 77%) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 5.22 (s, 1H), 5.16 (s, 1H), 5.08 – 5.03 (m, 1H), 4.80 (s, 1H), 4.55 (s, 1H), 4.28 – 3.95 (m, 5H), 3.82 – 3.69 (m, 4H), 3.63 – 3.35 (m, 8H), 3.28 – 3.21 (m, 3H), 2.79 (t, *J* = 7.5 Hz, 2H), 2.49 – 2.46 (m, 1H), 2.03 – 2.00 (m, 1H), 1.59 – 1.53 (m, 3H), 1.46 – 1.42 (m, 45H, Boc-'Bu), 1.31 – 1.24 (m, 16H), 0.96 – 0.87 (m, 36H, TBDMS- 'Bu), 0.16 – -0.03 (m, 24H, TBDMS-SiMe₂). MALDI TOF-MS *m/e* [M+Na]⁺ calcd for C₇₉H₁₅₈N₆O₁₉Si₄Na⁺, 1628.0395; measured *m/e*, 1628.0399.

Synthesis and characterization of 5-*O*-(8-aminooctyl)-1, 3, 2′,6′, 3″-penta-*N*-Boc- 4′, 2″, 4″,6″tetra-*O*-TBDMS-tobramycin (6b).

The compound **6b** was synthesized by following general procedure xx using compound **5b** (0.600 g, 0.371 mmol), sodium azide (0.482 g, 7.42 mmol), Pd(OH)₂/C (0.025 g, 0.038 mmol, 20 wt% loading) to give desired product **6b** as white solid (0.413 g, 70%). ¹H NMR (500 MHz, CDCl₃) δ 5.17 (s, 1H), 5.09 (s, 1H), 5.04 – 4.99 (m, 1H), 4.73 (s, 1H), 4.51 (s, 1H), 4.20 – 4.02 (m, 5H), 3.78 – 3.64 (m, 4H), 3.59 – 3.36 (m, 6H), 3.23 – 3.11 (m, 4H), 2.72 (s, 2H), 2.51 – 2.40 (m, 1H), 1.97 – 1.88 (m, 1H), 1.51 – 1.36 (m, 49H, Boc-'Bu), 1.26 – 1.12 (m, 8H), 0.90 – 0.81 (m, 36H, TBDMS- 'Bu), 0.10 – -0.03 (m, 24H, TBDMS-SiMe₂). MALDI TOF-MS *m/e* [M+Na]⁺ calcd for C₇₅H₁₅₀N₆O₁₉Si₄Na⁺, 1573.9925; observed 1573.9843.

Synthesis and characterization of 5-*O*-(2-amino-PEG3)-1, 3, 2',6', 3"-penta-*N*-Boc- 4', 2", 4",6"-tetra-*O*-TBDMS-tobramycin (6c).

The compound **6c** was synthesized by following general procedure D using compound **5c** (0.360 g, 0.216 mmol), sodium azide (0.281 g, 4.32 mmol), Pd(OH)₂/C (0.016 g, 0.022 mmol, 20 wt% loading) and gave desired product **6c** (0.226 g, 64%) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 5.34 (s, 1H), 5.20 (s, 1H), 5.10 (s, 1H), 4.99 – 4.96 (m, 1H), 4.39 (s, 1H), 3.80 – 3.53 (m, 26H),

3.32 – 3.13 (m, 5H), 2.35 – 2.31 (m, 1H), 1.97 – 1.91 (m, 1H), 1.70 – 1.57 (m, 2H), 1.50 – 1.39 (m, 45H, Boc-'Bu), 0.98 – 0.83 (m, 36H, TBDMS- 'Bu), 0.25 – 0.05 (m, 24H, TBDMS-SiMe₂); ¹³C NMR (100 MHz, CDCl₃) δ 156.85, 155.41, 154.81, 96.13, 79.39, 79.28, 79.19, 79.03, 75.21, 72.17, 71.66, 71.39, 70.82, 70.24, 69.95, 67.70, 67.19, 63.10, 56.80, 50.60, 48.94, 48.30, 41.68, 39.67, 35.54, 35.29, 29.71, 28.66, 28.63, 28.59, 28.53, 28.48, 28.43, 26.17, 26.12, 26.05, 26.00, 25.88, 18.56, 18.34, 18.13, 17.98, 14.13, -3.80, -4.81, -4.91, -5.13, -5.25. MALDI TOF-MS *m/e* [M+Na]⁺ calcd for C₇₅H₁₅₀N₆O₁₉Si₄Na⁺, 1621.9772; observed 1621.9472.

5-O-((4-aminomethyl)biphenyl)-1, 3, 2', 6', 3"-penta-N-Boc-4', 2", 4", 6"-tetra-O-TBDMStobramycin (6d).³

To a solution of corresponding azido compound of **5d** prepared by aforementioned procedure D (0.300 g, 0.182 mmol) in THF (5 mL) was added PMe₃ (1.82 mL, 1.82 mmol, 1.0 M solution in THF) under inert atmosphere at 0 °C. After addition, reaction mixture was stirred at ambient temperature for 5 h. After consumption of 5d, concentrated the reaction mass under reduced pressure and crude residue was subjected to purification by column chromatography (P60 silica) using 5-10 % MeOH/DCM (v/v) to afford desired product **6d** (0.183 g, 62%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 7.7 Hz, 2H), 7.43 (d, *J* = 7.4 Hz, 2H), 7.39 – 7.34 (m, 4H), 5.31 (s, 1H), 5.20 – 5.18 (m, 2H), 5.10 – 5.08 (m, 1H), 4.99 (s, 1H), 4.79 (s, 1H), 4.59 – 4.51 (m, 2H), 4.24 – 4.18 (m, 2H), 3.88 (s, 2H), 3.82 – 3.74 (m, 3H), 3.66 – 3.28 (m, 10H), 3.12 (s, 1H), 2.70 (s, 3H), 2.47 – 2.44 (m, 1H), 1.98 – 1.95 (m, 1H), 1.49 – 1.26 (m, 75H, Boc-'Bu + Me₃P=O), 0.90 – 0.76 (m, 36H, TBDMS- 'Bu), 0.10 – -0.16 (m, 24H, TBDMS-SiMe₂). MALDI TOF-MS *m/e* [M+Na]⁺ calcd for C₇₅H₁₅₀N₆O₁₉Si₄Na⁺, 1641.9612; observed 1641.9322. Compound **6d** was used as such without further purification in the next step.

7-(4-(*tert*-butoxycarbonyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (7).^{4, 5}

In an oven-dried RBF, ciprofloxacin (0.5 g, 1.50 mmol) was dissolved in dioxane:1N NaOH (2:1, 20 mL) solution and stirred at 0 °C. Then Boc-anhydride (0.416 mL, 1.81 mmol) was added at 0 °C. Then reaction mixture was warm to ambient temperature and stirred for 5 h. After consumption of ciprofloxacin, mixture was concentrated under reduced pressure and crude residue was subjected to purification by column chromatography (P60 silica) using 10-20% MeOH:DCM (v/v) to afford desired product 7 (0.520 g, 80%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 14.93

(s, 1H, COOH), 8.75 (s, 1H, H-2), 8.01 (d, J = 12.9 Hz, 1H H-5), 7.36 (d, J = 7.0 Hz, 1H, H-5), 3.67 (t, J = 5.0 Hz, 4H, CH₂ *piperazine*), 3.56 – 3.51 (m, 1H, CH-^cPr_{*Cip*}), 3.29 (t, J = 5.0 Hz, 4H, CH₂ *piperazine*), 1.50 (s, 9H, Boc-^{*t*}Bu), 1.42 – 1.37 (m, 2H, CH₂-^{*c*}Pr_{*Cip*}), 1.22 – 1.18 (m, 2H, CH₂-^{*c*}Pr); ¹³C NMR (100 MHz, CDCl₃) δ 176.10, 176.07, 165.89, 153.88, 153.54, 151.39, 146.49, 144.83, 144.72, 138.01, 119.17, 119.09, 111.67, 111.44, 107.20, 104.00, 103.96, 79.35, 48.74, 34.27, 27.39, 7.25. MS-ESI [M+H]⁺ calcd for C₂₂H₂₇FN₃O₅, 432.1929; observed,432.1916.

Synthesis, procedure, and characterizations of compounds 2 - 3 and 9 - 10

5-*O*-(*N*-dodecylacetamide)-1, 3, 2', 6', 3"-penta-*N*-Boc-4', 2", 4", 6"-tetra-*O*-TBDMS-tobramycin (9).

To a solution of compound **6a** (0.200 g, 0.124 mmol) in dry DCM (5 mL) DIPEA (0.05 mL, .310 mmol) was added followed by acetic anhydride (0.023 mL, 0.248 mmol) at 0 °C and after addition,

mixture was stirred at room temperature for 3 h. Then mixture was diluted with DCM (50 mL) and washed with water. Collected the DCM layer and washed with sat. solution of NaHCO₃ (10 mL) followed by brine solution (10 mL). The collected organic layer, dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude residue was further subjected to purification by column chromatography (P60 silica) using 3-5% MeOH:DCM (v/v) to afford desired product **9** (0.200 g, 98%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.25 – 7.14 (m, 1H), 5.50 – 5.41 (m, 1H), 5.21 – 5.03 (m, 4H), 4.77 (s, 2H), 4.51 (s, 1H), 4.26 – 3.97 (m, 3H), 3.78 – 3.33 (m, 12H), 3.26 – 3.10 (m, 5H), 2.45 – 2.36 (m, 1H), 2.06 – 1.84 (m, 5H), 1.53 – 1.12 (m, 60H), 0.95 – 0.74 (m, 36H), 0.15 – -0.08 (m, 24H); ¹³C NMR (125 MHz, CDCl₃) δ 169.89, 155.27, 154.74, 154.58, 96.55, 85.68, 79.92, 79.22, 75.20, 73.02, 71.58, 67.99, 66.86, 63.11, 57.17, 50.51, 48.36, 41.71, 39.70, 35.64, 30.60, 29.99, 29.59, 29.48, 29.30, 29.30, 28.64, 28.50, 28.40, 26.92, 26.13, 26.02, 25.99, 25.77, 23.35, 18.48, 18.33, 18.10, 17.90, -3.41, -3.80, -4.21, -4.88, -5.24. MALDI TOF-MS *m/e* [M+Na]⁺ calcd for C₇₅H₁₅₀N₆O₁₉Si₄Na⁺, 1672.0657; observed 1672.1345

5-*O*-(*N*-dodecylacetamide)-tobramycin (2): Compound 2 was synthesized by following general procedure B using compound **9** (0.200 g, 0.167 mmol) and methanolic HCl solution (10 mL) to give desired compound **3** (0.087 g, 82%) as an off-white solid. ¹H NMR (500 MHz, D₂O) δ 5.41 (d, *J* = 2.6 Hz, 1H, H-1'), 5.20 (d, *J* = 3.5 Hz, 1H, H-1"), 4.33 – 4.30 (m, 1H, H-5'), 4.24 (t, *J* = 9.8 Hz, 1H, H-4), 3.98 – 3.94 (m, 3H, H-6, H-5, H-4'), 3.93 – 3.79 (m, 6H, H-4", H-5", H-6", *O*-CH₂-linker), 3.76 – 3.73 (m, 2H, H-2',H-6"), 3.69 – 3.59 (m, 3H, H-1, H-3, H-3"), 3.43 (dd, *J* = 14.0, 9.2 Hz, 1H, H-6'), 3.37 – 3.32 (m, 1H, H-6'), 3.17 (t, *J* = 6.9 Hz, 2H, *N*-CH₂-linker), 2.57 (dt, *J* = 12.7, 4.4 Hz, 1H, H-2), 2.31 – 2.23 (m, 2H, H-3'), 2.08 – 2.00 (m, 1H, H-2), 1.99 (s, 3H, CH₃ *acetyl*), 1.68 – 1.63 (m, 2H, CH₂-linker), 1.54 – 1.48 (m, 2H, CH₂-linker), 1.30 (s, 16H, CH₂-linker); ¹³C NMR (125 MHz, D₂O) δ 173.92, 101.38, 92.71, 81.86, 81.84, 76.66, 75.79, 73.86, 73.19, 68.58, 64.85, 63.29, 59.30, 54.80, 49.81, 48.50, 47.35, 39.61, 38.59, 29.49, 28.98, 28.88, 28.78, 28.76, 28.74, 28.42, 28.25, 28.14, 27.74, 26.08, 25.33, 21.97. MALDI TOF-MS *m/e* calcd for C₃₂H₆₄N₆O₁₀Na⁺ [M+Na]⁺, 715.4576; found 715.4826.

Synthesis of tert-butyl 4-(1-cyclopropyl-3-(dodecylcarbamoyl)-6-fluoro-4-oxo-1,4dihydroquinolin-7-yl)piperazine-1-carboxylate (10).

This compound was synthesized by follow general procedure A for amide coupling using compound 7 (0.100g, 0.231 mmol), dodecylamine (0.043 g, 0.347 mmol), HATU (0.132 g, 0.0347

mmol), and DIPEA (0.100 ml, 0.579 mmol) to afford the desired product (0.110 g, 68%) as an offwhite solid. ¹H NMR (400 MHz, CDCl₃) δ 9.96 (s, 1H), 8.84 (s, 1H), 8.06 (d, *J* = 13.0 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 1H), 3.68 (s, 4H), 3.46 (s, 3H), 3.25 (s, 4H), 1.70 – 1.56 (m, 2H), 1.51 (s, 9H), 1.41 – 1.02 (m, 22H), 0.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.47, 175.44, 164.76, 161.62, 154.58, 152.10, 146.67, 144.77, 144.66, 138.40, 122.11, 122.04, 112.70, 112.47, 111.47, 104.98, 104.95, 80.19, 49.92, 45.61, 39.26, 34.67, 31.89, 29.64, 29.61, 29.53, 29.37, 29.33, 28.39, 27.14, 22.66, 14.11, 8.17. MS-ESI [M+H]⁺ calcd for C₃₄H₅₁FN₄O₄H, 599.396; observed 599.3934.

1-cyclopropyl-N-dodecyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-

carboxamide (3): Compound **3** was synthesized by following general procedure B using compound **10** (0.100 g, 0.167 mmol) and methanolic HCl solution (5 mL) to give desired compound **3** (0.081 g, 91%) as a light yellow solid. ¹H NMR (500 MHz, D₂O) δ 9.93 (bs, 1H), 8.22 (s, 1H), 7.28 (d, *J* = 12.4 Hz, 1H), 7.11 (s, 1H), 3.40 – 3.20 (m, 11H), 1.52 (b, 2H), 1.30 – 1.29 (m, 20H), 0.96 (bs, 3H), 0.72 (bs, 2H); ¹³C NMR (125 MHz, D₂O) δ 173.97, 165.11, 151.36, 145.82, 143.01, 137.57, 121.55, 111.89, 109.81, 105.64, 46.74, 43.39, 39.40, 35.00, 32.27, 32.25, 30.24, 29.88, 29.82, 29.40, 27.54, 22.88, 14.03, 7.65. MALDI TOF-MS *m/e* calcd for C₂₉H₄₄FN₄O₂ [M+H]⁺, 499.3443; found 499.3964 and [M+Na]⁺ 521.3855.

NMR spectra of compounds 1 – 10

Figure S2. 1 H and 13 C NMR of compound 1a in D₂O

Figure S3. COSY and HSQC 2D-NMR of compound 1a in D_2O

Figure S4. HMBC 2D-NMR of compound 1a in D₂O

Figure S5. 1 H and 13 C NMR of compound 1b in D₂O

Figure S6. COSY and HSQC 2D-NMR of compound 1b in D_2O

Figure S7. HMBC 2D-NMR of compound 1b in D₂O

Figure S8. ¹H and ¹³C NMR of compound 1c in D₂O

Figure S9. COSY and HSQC 2D-NMR of compound 1c in D_2O

Figure S10. HMBC 2D-NMR of compound 1c in D_2O

Figure S11. ¹H and ¹³C NMR of compound 1d in D₂O

Figure S12. COSY and HSQC 2D-NMR of compound 1d in D₂O

Figure S13. HMBC 2D-NMR of compound 1d in D₂O

Figure S14. ¹H and ¹³C NMR of compound 2 in D₂O

Figure S15. COSY and HSQC 2D-NMR of compound 2 in D_2O

Figure S16. HMBC 2D-NMR of compound 2 in D₂O

Figure S17. ¹H and ¹³C NMR of compound 3 in D_2O

Figure S18. 1 H of compound 4 and 5a in CDCl₃

Figure S20. ¹H and ¹³C NMR of compound 5c in CDCl₃

Figure S21. ¹H and ¹³C NMR of compound 5d in CDCl₃

Figure S22. ¹H of compound 6a and 6b in CDCl₃

Figure S23. ¹H and ¹³C NMR of compound 6c in CDCl₃

Figure S24. ¹H NMR of compound 6d in CDCl₃

Figure S25. ¹H and ¹³C NMR of compound 7 in CDCl₃

Figure S26. ¹H and ¹³C NMR of compound 8a in CDCl₃

Figure S27. ¹H and ¹³C NMR of compound 8b in CDCl₃

Figure S28. ¹H and ¹³C NMR of compound 8c in CDCl₃

Figure S29. ¹H and ¹³C NMR of compound 8d in CDCl₃

Figure S30. ¹H and ¹³C NMR of compound 9 in CDCl₃

Figure S31. ¹H and ¹³C NMR of compound 10 in CDCl₃

References:

- Gorityala, B. K.; Guchhait, G.; Fernando, D. M.; Deo, S.; McKenna, S. A.; Zhanel, G. G.; Kumar, A.; Schweizer, F. (2016) Adjuvants based on hybrid antibiotics overcome resistance in Pseudomonas aeruginosa and enhance fluoroquinolone efficacy. *Angew. Chem., Int. Ed.* 55, 555-559.
- Dhiman, S.; Ramirez, D.; Li, Y.; Kumar, A.; Arthur, G.; Schweizer, F. (2023) Chimeric Tobramycin-Based Adjuvant TOB-TOB-CIP Potentiates Fluoroquinolone and β-Lactam Antibiotics against Multidrug-Resistant Pseudomonas aeruginosa. ACS Infect. Dis. 9, 864-885.
- Ogunsina, M.; Samadder, P.; Idowu, T.; Nachtigal, M.; Schweizer, F.; Arthur, G. (2020) Syntheses of 1-Rhamnose-Linked Amino Glycerolipids and Their Cytotoxic Activities against Human Cancer Cells. *Molecules 25*, 566.
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; Tinevez, J.-Y.; White, D. J.; Hartenstein, V.; Eliceiri, K.; Tomancak, P.; Cardona, A. (2012) Fiji: an open-source platform for biological-image analysis. *Nature Methods 9*, 676-682.
- Ongwae, G. M.; Lepori, I.; Chordia, M. D.; Dalesandro, B. E.; Apostolos, A. J.; Siegrist, M. S.; Pires, M. M. (2023) Measurement of Small Molecule Accumulation into Diderm Bacteria. *ACS Infect. Dis.* 9, 97-110.