Quinoline-based Schiff's base as possible antidiabetic agents: Ligand-based pharmacophore modeling, 3D QSAR, docking, and molecular dynamic simulations study

Shriram D. Ranade, ^a Shankar G. Alegaon, *^a Nayeem A. Khatib, ^b Shankar Gharge, ^a Rohini S. Kavalapure^a.

Affiliation(s):

^aDepartment of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE

Academy of Higher education and Research, Belagavi - 590 010, Karnataka, India

^bDepartment of Pharmacology, KLE College of Pharmacy, Belagavi, KLE Academy of Higher

education and Research, Belagavi - 590 010, Karnataka, India

¹H NMR (400 MHz, δ, ppm) spectra of compound 6a

LC-MS spectra of compound 6a

Base m/z Base Int. 401.35 3059385

Height A/H Mark %Total Name 4955872 16.19 100.00 4955872 100.00

SR-1

MS Pea Peak# 1

ak Table R.Time I.Time F.Time Area 0.820 0.527 1.093 80256286 80256286

¹H NMR (400 MHz, δ, ppm) spectra of compound 6b

¹³C NMR (400 MHz, δ, ppm) spectra of compound 6b

LC-MS spectra of compound 6b

FTIR (KBr, cm⁻¹) spectra of compound 6c

 1H NMR (400 MHz, $\delta,$ ppm) spectra of compound 6c

^{13}C NMR (400 MHz, $\delta,$ ppm) spectra of compound 6c

LC-MS spectra of compound 6c

 1H NMR (400 MHz, $\delta,$ ppm) spectra of compound 6d

¹³C NMR (400 MHz, δ, ppm) spectra of compound 6d

LC-MS spectra of compound 6d

SR-2

 1H NMR (400 MHz, $\delta,$ ppm) spectra of compound 6e

 ^1H NMR (400 MHz, $\delta,$ ppm) spectra of compound 6f

 1H NMR (400 MHz, $\delta,$ ppm) spectra of compound 6g

SR-6

 1H NMR (400 MHz, $\delta,$ ppm) spectra of compound 6h

FTIR (KBr, cm⁻¹) spectra of compound 6i

¹H NMR (400 MHz, δ, ppm) spectra of compound 6i

FTIR (KBr, cm⁻¹) spectra of compound 6j

¹H NMR (400 MHz, δ, ppm) spectra of compound 6j

LC-MS spectra of compound 6j

Title	Survival	Site	Vector	Volume	BEDROC	PhaseHypoScore
	Score	Score	Score	Score	Score	
AADRR_1	5.069738	0.991397	0.955287	0.73662	0.98377	1.287982
AADRR_3	4.905304	0.813427	0.8755	0.715986	0.99262	1.286918
ADRR_2	4.84413	0.995019	0.941394	0.735339	0.987352	1.278046
AADRR_5	4.711901	0.723739	0.815888	0.631069	0.988926	1.271614
AAARR_2	4.739191	0.728928	0.8424	0.635954	0.973156	1.257552
AAADR_2	4.63441	0.823841	0.908019	0.715564	0.97829	1.256364
ADRR_1	4.87274	0.992516	0.944214	0.736519	0.962434	1.254762
AADR_2	4.6006	0.992794	0.952345	0.736964	0.973126	1.249136
AARR_3	4.602119	0.690675	0.957448	0.729225	0.863529	1.139626
AARR 2	4.724841	0.790252	0.964125	0.751729	0.842105	1.125588
ARRR 2	4.674086	0.685647	0.966347	0.716074	0.67823	0.958646

 Table. S1: Total generated hypothesis.

Title	Fitness	
6a	2.593529	
6d	2.591902	
6c	2.590907	
6b	2.587568	
6f	2.58324	
6h	2.583012	
6e	2.575609	
6ј	2.571411	
6i	2.565869	
6g	2.565004	
schrod_417623	1.983863	
schrod_540219	1.980556	
schrod_801249	1.980008	
schrod_652409	1.972778	
schrod_666306	1.960321	
schrod_262504	1.940985	
schrod_277226	1.940023	
schrod_441781	1.927018	
schrod_704471	1.919194	
6m	1.918694	
schrod 795607	1.918697	

schrod_459822	1.915985
schrod_650568	1.9158
schrod_614928	1.9154

Fig.S1: Enrichment analysis plot of pharmacophore based screening.