Supporting Information

Novel Sulfonamides Unveiled as Potent Anti-Lung Cancer Agents via Tumor Pyruvate Kinase M2 Activation

Rudradip Das^a, Deep Rohan Chatterjee^a, Saumya Kapoor^a, Het Vyas^a and Amit Shard^a*

^aDepartment of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Opposite Airforce station, Palaj, Gandhinagar, Gujarat – 382355, India.

*Corresponding author- Email- amit@niperahm.res.in (Orcid id: https://orcid.org/0000-0003-4109-6275)

Contents

1. General methods for synthesis
2. NMR and HRMS spectral information of the synthesized compounds
3. HPLC method and purity chromatogram of synthesized compounds
4. Lactate dehydrogenase-coupled enzyme assay results for compounds (9a-9s and 10a-10s)95
5. Cytotoxicity (Alamar blue) assay results for compounds (9a-9s and 10a-10s)- A549 cell line96
6. Cytotoxicity (Alamar blue) assay results for compounds (9a-9s and 10a-10s)- BEAS-2B cell line96
7. Cytotoxicity (Alamar blue) assay results for compounds (9a-9s and 10a-10s)- COLO-205 cell line .97
8. Cytotoxicity (Alamar blue) assay results for compounds (9a-9s and 10a-10s)- MCF-7 cell line98
9. Cytotoxicity (Alamar blue) assay results for compounds (9a-9s and 10a-10s)- CAL-7 cell line98
10. FE-SEM and EDAX data for compound 10q99
11. Molecular dynamic simulation data for 9b-PKM2 interaction100
12. Data related to single crystal X-ray diffraction analysis of compound 10q100
13. Chemical Structures of the synthesized compounds109

1. General methods for synthesis

Sulfonyl chloride derivatives, Dimethyl sulfoxide (DMSO), Dimethylformamide (DMF), N,N-Dimethylformamide dimethyl acetal (DMF-DMA), 1-Boc- piperazine, 2-aminopyridine, 2aminopyrimidine, dimethylformamide (DMF). From Sigma Aldrich, we obtained 1,3dichloroacetone, and trifluoroacetic acid (TFA). Thermo Fisher Scientific India Pvt. Ltd. supplied the following chemicals: acetonitrile (ACN), dichloromethane (DCM), chloroform (CHCl3), ethyl acetate, hexane, ethanol, and methanol. The Corning trans well inserts (6 mm in diameter) and polystyrene polymer (derived from tissue culture polystyrene, or TCPS) were purchased from Sigma Aldrich in India. Using Bruker NMR and internal standard tetramethylsilane (as = 0 ppm), ¹H NMR, ¹³C NMR, and ¹⁹F NMR data were collected at 500 MHz, 125 MHz, and 471 MHz respectively. Values for coupling constants (J) are given in Hz. Chemical shift multiplicities were given the following abbreviations: s = singlet, br = broad, d = doublet, t = triplet, q = quartet, and m = multiplet. MestReNova software was used to evaluate the NMR data. Mass spectra were captured using the Agilent 6545, LC/MS using a Q-TOF analyser, in positive mode. Using Agilent 1260 infinity II equipment and an eclipse C18 column (250 4.6 mM, 5 M) eluted at 1 mL/min with 0.1 percent formic acid and acetonitrile, the purity was evaluated. The compounds displayed greater than 95% purity. In the BUCHI M-560 instrument, the melting points of the produced compounds were recorded. A licenced version of Chemdraw was used to create all of the structures.^{1,2}

Initially, 3.0 equivalence of DMF-DMA was applied to 2-aminopyri(mi)dine **1a-b** in the presence of methanol at 80 °C for 4 hours. The consumption of all of the 2-aminopyri(mi)dine **1a-b** was used to determine when the reaction had finished by thin layer chromatography (TLC).¹ Without additional purification, the reaction mixture was concentrated under vacuum pressure and used to furnish the Schiff base **2a-b**. The finished product was exposed to **1**,3-dichloroacetone **3** for four hours at 70°C in the presence of the aprotic solvent acetonitrile. The imidazopyri(mi)dine substituted chloroacetophenone adduct **4a-b** was purified by column chromatography and used as a starting material for further reactions after the reaction was finished. Next, three steps were taken to complete the synthesis. A round-bottomed flask was first filled with a mixture of substituted sulfonyl chlorides 6 (1 equiv) and Boc-protected piperazine 5 (1.05 equiv) in 4 mL of dichloromethane. Next, triethylamine (1.2 equiv) was added while the mixture was continuously stirred at room temperature for two hours. TLC kept track of the reaction's development (Hexane: Ethyl acetate in the ratio of 70:30). The reaction mixture was first extracted with ethyl acetate after which it was washed with water, dried over anhydrous sodium sulphate, filtered, and the solvent was then evaporated using a rotary evaporator. The crude product **7** then went through the deprotection process. Trifluoroacetic acid (TFA) and DCM (3:7) were used to dissolve the dry intermediate, which was then agitated at room temperature for two hours. DCM and TFA were evaporated on the rotary evaporator after the deprotection was confirmed by TLC (Hexane: Ethyl acetate in the ratio of 50:50). Following that, DMSO was added to the deprotected intermediate 8 and it was dissolved. Then, the previously synthesised imidazopyri(mi)dine substituted chloroacetophenone adduct **4a-b** (1 equiv.) and activated K_2CO_3 (1.2 equiv.) were added, and the mixture was agitated at 80 °C for two hours. The reaction mixture was poured over crushed ice after it had finished, as determined by TLC (in 100 percent ethyl acetate), and then extracted using a DCM-water solvent system. In order to obtain the product as a yellowish-white solid, the extracted organic layer was passed over anhydrous sodium sulphate and purified by column chromatography (with mobile phase hexane: ethyl acetate in the ratio of 30:70). The ¹H, ¹³C, ¹⁹F NMR spectra, and HRMS readings were used to comprehensively characterise each product 9a-s and 10a-s.

1. Rasapalli, S., Kumbam, V., Dhawane, A. N., Golen, J. A., Lovely, C. J., & Rheingold, A. L. (2013). Total syntheses of oroidin, hymenidin and clathrodin. Organic & Biomolecular Chemistry, 11(25), 4133-4137.

2. Vasu, K. K., Digwal, C. S., Pandya, A. N., Pandya, D. H., Sharma, J. A., Patel, S., & Agarwal, M. (2017). Imidazo [1, 2-a] pyridines linked with thiazoles/thiophene motif through keto spacer as potential cytotoxic agents and NF- κ B inhibitors. Bioorganic & Medicinal Chemistry Letters, 27(24), 5463-5466.

2. NMR and HRMS spectral information of the synthesized compounds

NMR and HRMS spectra

1: 1- (imidazo[1,2-a]pyrimidin-3-yl)-2-(4-(phenylsulfonyl)piperazin-1-yl)ethan-1-one (9b) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S1: 1- (imidazo[1,2-a]pyrimidin-3-yl)-2-(4-(phenylsulfonyl)piperazin-1-yl)ethan-1-one (9b) (¹H NMR, ¹³C NMR & HRMS Spectra).

2: 1-(imidazo[1,2-a]pyrimidin-3-yl)-2-(4-(thiophen-2-ylsulfonyl)piperazin-1-yl)ethan-1-one (9c) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S2: 1-(imidazo[1,2-a]pyrimidin-3-yl)-2-(4-(thiophen-2-ylsulfonyl)piperazin-1-yl)ethan-1one (9c) (¹H NMR, ¹³C NMR & HRMS Spectra).

3: 1-(imidazo[1,2-a]pyrimidin-3-yl)-2-(4-((4-(trifluoromethyl)phenyl)sulfonyl)piperazin-1-yl)ethan-1-one (9d) (¹H NMR, ¹³C NMR, ¹⁹F NMR & HRMS Spectra)

FIGURE S3: 1-(imidazo[1,2-a]pyrimidin-3-yl)-2-(4-((4-(trifluoromethyl)phenyl)sulfonyl)piperazin-1-yl)ethan-1-one (9d) (¹H NMR, ¹³C NMR, ¹⁹F NMR & HRMS Spectra).

4: 2-(4-((5-bromo-2-methoxyphenyl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyrimidin-3-yl)ethan-1-one (9j) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S4: 2-(4-((5-bromo-2-methoxyphenyl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyrimidin-3-yl)ethan-1-one (9j) (¹H NMR, ¹³C NMR & HRMS Spectra).

5: 1-(imidazo[1,2-a]pyrimidin-3-yl)-2-(4-tosylpiperazin-1-yl)ethan-1-one (9a) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S5: 1-(imidazo[1,2-a]pyrimidin-3-yl)-2-(4-tosylpiperazin-1-yl)ethan-1-one (9a) (¹H NMR, ¹³C NMR & HRMS Spectra).

6: 2-(4-((4-bromophenyl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyrimidin-3-yl)ethan-1-one (9e) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S6: 2-(4-((4-bromophenyl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyrimidin-3-yl)ethan-1-one (9e) (¹H NMR, ¹³C NMR & HRMS Spectra).

7: 2-(4-((4-fluorophenyl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyrimidin-3-yl)ethan-1-one (9f) (¹H NMR, ¹³C NMR, ¹⁹F NMR & HRMS Spectra)

2. 1.5-316.2110 102.0906 0.5 202.1796 360.2355 484.0564 843.6815 919.7094 Counts vs. Mass-to-Charge (m/z)

FIGURE S7: 2-(4-((4-fluorophenyl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyrimidin-3-yl)ethan-1-one (9f) (¹H NMR, ¹³C NMR, ¹⁹F NMR & HRMS Spectra).

8: 1-(imidazo[1,2-a]pyrimidin-3-yl)-2-(4-((4-methoxyphenyl)sulfonyl)piperazin-1-yl)ethan-1-one (9g) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S8: 1-(imidazo[1,2-a]pyrimidin-3-yl)-2-(4-((4-methoxyphenyl)sulfonyl)piperazin-1-yl)ethan-1-one (9g) (¹H NMR, ¹³C NMR & HRMS Spectra).

9: 2-(4-((2,5-dichlorophenyl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyrimidin-3-yl)ethan-1-one (9h) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S9: 2-(4-((2,5-dichlorophenyl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyrimidin-3-yl)ethan-1-one (9h) (¹H NMR, ¹³C NMR & HRMS Spectra).

10: 1-(imidazo[1,2-a]pyrimidin-3-yl)-2-(4-(mesitylsulfonyl)piperazin-1-yl)ethan-1-one (9i) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S10: 1-(imidazo[1,2-a]pyrimidin-3-yl)-2-(4-(mesityIsulfonyI)piperazin-1-yl)ethan-1-one (9i) (¹H NMR, ¹³C NMR & HRMS Spectra).

11: 2-(4-((3-bromophenyl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyrimidin-3-yl)ethan-1-one (9k) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S11: 2-(4-((3-bromophenyl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyrimidin-3-yl)ethan-1-one (9k) (¹H NMR, ¹³C NMR & HRMS Spectra).

12: 2-(4-(cyclohexylsulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyrimidin-3-yl)ethan-1-one (9l) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S12: 2-(4-(cyclohexylsulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyrimidin-3-yl)ethan-1one (9I) (¹H NMR, ¹³C NMR & HRMS Spectra).

13: 2-(4-((5-bromothiophen-2-yl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyrimidin-3-yl)ethan-1one (9m) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S13: 2-(4-((5-bromothiophen-2-yl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyrimidin-3-yl)ethan-1-one (9m) (¹H NMR, ¹³C NMR & HRMS Spectra).

14: 2-(4-((5-chlorothiophen-2-yl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyrimidin-3-yl)ethan-1one (9q) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S14: 2-(4-((5-chlorothiophen-2-yl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyrimidin-3-yl)ethan-1-one (9q) (¹H NMR, ¹³C NMR & HRMS Spectra).

FIGURE S15: 2-(4-(cyclopropylsulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyrimidin-3-yl)ethan-1one (9n) (¹H NMR, ¹³C NMR & HRMS Spectra).

16: 2-((4-(2-(imidazo[1,2-a]pyrimidin-3-yl)-2-oxoethyl)piperazin-1-yl)sulfonyl)benzonitrile (9o) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURES16:2-((4-(2-(imidazo[1,2-a]pyrimidin-3-yl)-2-oxoethyl)piperazin-1-yl)sulfonyl)benzonitrile (90) (¹H NMR, ¹³C NMR & HRMS Spectra).
17: 1-(imidazo[1,2-a]pyrimidin-3-yl)-2-(4-((4'-methoxy-[1,1'-biphenyl]-4-yl)sulfonyl)piperazin-1yl)ethan-1-one (9r) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S17: 1-(imidazo[1,2-a]pyrimidin-3-yl)-2-(4-((4'-methoxy-[1,1'-biphenyl]-4-yl)sulfonyl)piperazin-1-yl)ethan-1-one (9r) (¹H NMR, ¹³C NMR & HRMS Spectra).

FIGURE S18: 1-(imidazo[1,2-a]pyrimidin-3-yl)-2-(4-((4-nitrophenyl)sulfonyl)piperazin-1-yl)ethan-1-one (9s) (¹H NMR, ¹³C NMR & HRMS Spectra).

19: 2-(4-((2-chloro-4-fluorophenyl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyrimidin-3-yl)ethan-1one (9p) (¹H NMR, ¹³C NMR, ¹⁹F NMR & HRMS Spectra)

FIGURE S19: 2-(4-((2-chloro-4-fluorophenyl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyrimidin-3-yl)ethan-1-one (9p) (¹H NMR, ¹³C NMR, ¹⁹F NMR & HRMS Spectra).

FIGURE S20: 1-(imidazo[1,2-a]pyridin-3-yl)-2-(4-tosylpiperazin-1-yl)ethan-1-one (10a) (¹H NMR, ¹³C NMR & HRMS Spectra).

21: 2-(4-((2,5-dichlorophenyl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyridin-3-yl)ethan-1-one (10h) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S21: 2-(4-((2,5-dichlorophenyl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyridin-3-yl)ethan-1-one (10h) (¹H NMR, ¹³C NMR & HRMS Spectra).

22: 1-(imidazo[1,2-a]pyridin-3-yl)-2-(4-((4-nitrophenyl)sulfonyl)piperazin-1-yl)ethan-1-one (10s) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S22: 1-(imidazo[1,2-a]pyridin-3-yl)-2-(4-((4-nitrophenyl)sulfonyl)piperazin-1-yl)ethan-1one (10s) (¹H NMR, ¹³C NMR & HRMS Spectra).

23: 2-((4-(2-(imidazo[1,2-a]pyridin-3-yl)-2-oxoethyl)piperazin-1-yl)sulfonyl)benzonitrile (10o) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S23: 2-((4-(2-(imidazo[1,2-a]pyridin-3-yl)-2-oxoethyl)piperazin-1-yl)sulfonyl)benzonitrile (10o) (¹H NMR, ¹³C NMR & HRMS Spectra).

24: 1-(imidazo[1,2-a]pyridin-3-yl)-2-(4-(thiophen-2-ylsulfonyl)piperazin-1-yl)ethan-1-one (10c) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S24: 1-(imidazo[1,2-a]pyridin-3-yl)-2-(4-(thiophen-2-ylsulfonyl)piperazin-1-yl)ethan-1one (10c) (¹H NMR, ¹³C NMR & HRMS Spectra).

25: 2-(4-(cyclopropylsulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyridin-3-yl)ethan-1-one (10n) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S25: 2-(4-(cyclopropylsulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyridin-3-yl)ethan-1-one (10n) (¹H NMR, ¹³C NMR & HRMS Spectra).

26: 2-(4-((5-bromo-2-methoxyphenyl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]XXXyridine-3yl)ethan-1-one (10j) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S26: 2-(4-((5-bromo-2-methoxyphenyl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a] yridine-3-yl)ethan-1-one (10j) (¹H NMR, ¹³C NMR & HRMS Spectra).

27: 1-(imidazo[1,2-a]pyridin-3-yl)-2-(4-((4'-methoxy-[1,1'-biphenyl]-4-yl)sulfonyl)piperazin-1-yl)ethan-1-one (10r) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S27: 1-(imidazo[1,2-a]pyridin-3-yl)-2-(4-((4'-methoxy-[1,1'-biphenyl]-4-yl)sulfonyl)piperazin-1-yl)ethan-1-one (10r) (¹H NMR, ¹³C NMR & HRMS Spectra).

28: 1-(imidazo[1,2-a]pyridin-3-yl)-2-(4-((4-(trifluoromethyl)phenyl)sulfonyl)piperazin-1-yl)ethan-1one (10d) (¹H NMR, ¹³C NMR, ¹⁹F NMR & HRMS Spectra)

FIGURE S28: 1-(imidazo[1,2-a]pyridin-3-yl)-2-(4-((4-(trifluoromethyl)phenyl)sulfonyl)piperazin-1-yl)ethan-1-one (10d) (¹H NMR, ¹³C NMR, ¹⁹F NMR & HRMS Spectra).

29: 1-(imidazo[1,2-a]pyridin-3-yl)-2-(4-(mesitylsulfonyl)piperazin-1-yl)ethan-1-one (10i) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S29: 1-(imidazo[1,2-a]pyridin-3-yl)-2-(4-(mesitylsulfonyl)piperazin-1-yl)ethan-1-one (10i) (¹H NMR, ¹³C NMR & HRMS Spectra).

FIGURE S30: 2-(4-((4-bromophenyl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyridin-3-yl)ethan-1-one (10e) (¹H NMR, ¹³C NMR & HRMS Spectra).

31: 2-(4-((4-fluorophenyl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyridin-3-yl)ethan-1-one (10f) (¹H NMR, ¹³C NMR, ¹⁹F NMR & HRMS Spectra)

Counts vs. Mass-to-Charge (m/z)

FIGURE S31: 2-(4-((4-fluorophenyl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyridin-3-yl)ethan-1-one (10f) (¹H NMR, ¹³C NMR, ¹⁹F NMR & HRMS Spectra).

32: 2-(4-((3-bromophenyl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyridin-3-yl)ethan-1-one (10k) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S32: 2-(4-((3-bromophenyl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyridin-3-yl)ethan-1-one (10k) (¹H NMR, ¹³C NMR & HRMS Spectra).

33: 2-(4-((5-bromothiophen-2-yl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyridin-3-yl)ethan-1-one (10m) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S33: 2-(4-((5-bromothiophen-2-yl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyridin-3-yl)ethan-1-one (10m) (¹H NMR, ¹³C NMR & HRMS Spectra).
34: 2-(4-((5-chlorothiophen-2-yl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyridin-3-yl)ethan-1-one (10q) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S34: 2-(4-((5-chlorothiophen-2-yl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyridin-3-yl)ethan-1-one (10q) (¹H NMR, ¹³C NMR & HRMS Spectra).

35: 2-(4-((2-chloro-4-fluorophenyl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyridin-3-yl)ethan-1one (10p) (¹H NMR, ¹³C NMR, ¹⁹F NMR & HRMS Spectra)

FIGURE S35: 2-(4-((2-chloro-4-fluorophenyl)sulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyridin-3-yl)ethan-1-one (10p) (¹H NMR, ¹³C NMR, ¹⁹F NMR & HRMS Spectra).

36: 2-(4-(cyclohexylsulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyridin-3-yl)ethan-1-one (10l) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S36: 2-(4-(cyclohexylsulfonyl)piperazin-1-yl)-1-(imidazo[1,2-a]pyridin-3-yl)ethan-1-one (10l) (¹H NMR, ¹³C NMR & HRMS Spectra).

37: 1-(imidazo[1,2-a]pyridin-3-yl)-2-(4-(phenylsulfonyl)piperazin-1-yl)ethan-1-one (10b) (¹H NMR,

¹³C NMR & HRMS Spectra)

FIGURE S37: 1-(imidazo[1,2-a]pyridin-3-yl)-2-(4-(phenylsulfonyl)piperazin-1-yl)ethan-1-one (10b) (¹H NMR, ¹³C NMR & HRMS Spectra).

38: 1-(imidazo[1,2-a]pyridin-3-yl)-2-(4-((4-methoxyphenyl)sulfonyl)piperazin-1-yl)ethan-1-one (10g) (¹H NMR, ¹³C NMR & HRMS Spectra)

FIGURE S38: 1-(imidazo[1,2-a]pyridin-3-yl)-2-(4-((4-methoxyphenyl)sulfonyl)piperazin-1-yl)ethan-1-one (10g) (¹H NMR, ¹³C NMR & HRMS Spectra).

3. HPLC method and purity chromatogram of synthesized compounds

An Agilent 1260 infinity II system with phenomenix kinetic C_{18} column (250 × 4.6 mM, 5 μ M) eluted at 1 mL/min with gradient elution having solvent system of water (ultrapure)+ 0.1% formic acid: methanol (procured from ualigens) was used for analyzing the purity of the compounds; 100 ppm of the analyte solution was prepared in HPLC-grade methanol. The method optimized was gradient having a duration of 15 min. The injection volume was 20 μ L. The detector

utilized was diode-array detection. The chromatograms revealed purity of more than 95% as provided in the supporting information.

Signal:	DAD1	A,Sig=250,4 R	ef=360,100		
RT [min]	Туре	Width [min]	Area	Height	Area%
1.860	VV	0.5733	90.8027	19.6814	0.4213
7.980	VV	0.6400	21459.9336	2784.5773	99.5787
		Sum	21550.7363		

Signal:	DAD1A,Sig=250,4	Ref=360,100
---------	-----------------	-------------

RT [min] Type	Width [min]	Area	Height	Area%
8.766 vv	0.2400	28.1798	4.1421	0.1504
9.113 vv	0.5800	18700.9105	2779.8086	99.8107
9.646 vv	0.3467	7.2926	0.8883	0.0389
	Sum	18736 3829		

Sum 14404.6768

DAD1E,Sig=280,4 Ref=360,100

S-83

Signal: DAD1A,Sig=250,4 Ref=360,100

RT [min] Type	Width [min]	Area	Height	Area%
8.444 vv	0.2732	8.1023	0.8842	0.0401
8.737 vv	0.2133	22.7832	3.4676	0.1127
9.050 vv	0.6331	19235.9023	2712.5934	95.1703
10.770 vv	0.6198	945.2969	48.6155	4.6769
	Sum	20212 0847		

Signal: DAD1E,Sig=280,4 Ref=360,100

RT [min] Type	Width [min]	Area	Height	Area%
1.860 vv	0.4133	45.6900	8.3211	0.2585
2.613 vv	0.2533	30.6423	4.9430	0.1734
8.200 vv	0.2600	40.1094	6.0094	0.2269
8.586 vv	0.5933	17558.4382	2322.1548	99.3412
	Sum	17674.8799		

DAD1F,Sig=305,4 Ref=360,100 Signal: RT [min] Type Width [min] Area Height Area% 1.860 vv 0.4066 33.2518 4.9853 0.1823 8.379 vv 0.3066 53.8176 6.0174 0.2950 8.765 vv 0.5133 17714.1656 2555.3427 97.0926 9.505 vv 0.3599 443.3830 70.4871 2.4302 Sum 18244.6181

S-85

Signal:	DAD1F,Sig=305,4	Ref=360,100
---------	-----------------	-------------

RT [min] Type	Width [min]	Area	Height	Area%
1.853 vv	0.4399	122.4950	18.8099	0.9676
8.064 vv	0.4132	283.2826	42.0222	2.2376
8.510 vv	0.3599	126.5318	13.8704	0.9995
8.817 vv	0.5198	12091.8028	1772.6533	95.5127
9.577 vv	0.2133	35.7729	6.4974	0.2826
	Sum	12659.8851		

Signal: DAD1B,Sig=252,4 Ref=360,100

RT [min] Type	Width [min]	Area	Height	Area%
1.853 vv	0.6133	533.5877	98.2186	1.9255
2.747 vv	0.7467	205.9766	13.1184	0.7433
7.993 vv	0.7067	26955.0131	2940.6557	97.2718
8.607 vv	0.2067	16.4572	2.6001	0.0594
	Sum	27711.0345		

Jighan.	DADI	11,01g-200,4 10	=======================================		
RT [min]	Туре	Width [min]	Area	Height	Area%
1.853	vv	0.4400	42.1839	7.5443	0.1856
2.733	VV	0.5200	415.0866	55.6977	1.8264
8.573	vv	0.6533	22269.2835	2405.0970	97.9879
		Sum	22726.5540		

Signal:	DAD1	E,Sig=280,4 Re	ef=360,100		
RT [min]	Туре	Width [min]	Area	Height	Area%
2.219	vv	0.1666	14.7879	3.3469	0.0977
2.466	vv	0.3665	36.4757	4.4190	0.2409
6.851	VV	0.3399	55.2425	7.3588	0.3648
8.271	vv	0.2932	57.7924	7.9042	0.3817
8.657	VV	0.5465	14977.2234	2269.0087	98.9149
		Sum	15141.5220		

	-			
RT [min] Type	Width [min]	Area	Height	Area%
1.846 vv	0.2933	17.1509	3.5232	0.2182
2.726 vv	0.5199	298.4970	34.1620	3.7975
8.005 vv	0.4732	7544.7477	1088.4034	95.9843
	Sum	7860.3955		

2865.1959

1.6555

99.6495

0.0511

0.3133	12.2392
Sum	23964.5709

23880.5842

0.5733

9.106 vv

9.679 vv

Sum 18029.9753

Туре	Width [min]	Area	Height	Area%
vv	0.2199	18.5197	3.3654	0.3197
vv	0.6265	139.7612	10.3722	2.4124
vv	0.6664	5635.1149	878.8148	97.2679
	Sum	5793.3957		
	Type vv vv vv	Type Width [min] vv 0.2199 vv 0.6265 vv 0.6664 Sum	Type Width [min] Area vv 0.2199 18.5197 vv 0.6265 139.7612 vv 0.6664 5635.1149 Sum 5793.3957	Type Width [min] Area Height vv 0.2199 18.5197 3.3654 vv 0.6265 139.7612 10.3722 vv 0.6664 5635.1149 878.8148 Sum 5793.3957

Area%

Signal: DAD1E,Sig=280,4 Ref=360,100 RT [min] Type Width [min] Area Height 9.258 vv 0.5865 6832.0171 1189.9179 100.0000

Signal:	DAD1B,Sig=252,4	Ref=360,100
---------	-----------------	-------------

RT [min] Type	Width [min]	Area	Height	Area%
7.320 vv	0.3000	22.0272	3.7468	0.2490
9.707 vv	0.5467	8825.5994	1382.3538	99.7510
	Sum	8847.6266		

FIGURE S39: HPLC chromatograms of all the synthesized compounds along with their percentage purity.

4. Lactate dehydrogenase-coupled enzyme assay results for compounds (9a-9s and 10a-

FIGURE S40: Lactate dehydrogenase-couppled enzyme assay results of the synthesized compounds. DASA-58 and L-phenylalanine has been used as the standard PKM2 activator and inhibitor.

6. Cytotoxicity (Alamar blue) assay results for compounds (9a-9s and 10a-10s)- BEAS-2B a cell line b

FIGURE S42: Cytotoxicity assay results of the synthesized compounds against BEAS-2B cell line.

7. Cytotoxicity (Alamar blue) assay results for compounds (9a-9s and 10a-10s)- COLO-205 cell line

FIGURE S43: Cytotoxicity assay results of the synthesized compounds against COLO-205 cell line.

8. Cytotoxicity (Alamar blue) assay results for compounds (9a-9s and 10a-10s)- MCF-7 cell line

FIGURE S44: Cytotoxicity assay results of the synthesized compounds against MCF-7 cell line.

9. Cytotoxicity (Alamar blue) assay results for compounds (9a-9s and 10a-10s)- CAL-7 cell line

FIGURE S45: Cytotoxicity assay results of the synthesized compounds against CAL-27 cell line.

10. FE-SEM and EDAX data for compound 10q

FIGURE S46: Field Emission Scanning Electron Microscopy (FE-SEM) micrographs of compound 10q at different concentrations: a) 20μM, b) 10μM, and c) 5μM. Additionally, d) Energy Dispersive X-Ray Analysis (EDX) reveals the elemental composition present in compound 10q.

Field emission scanning electron microscopy (FE-SEM) provides topographical and elemental information with an almost limitless depth of field at magnifications ranging from 10x to 300,000x. With spatial resolution down to 1.5 nanometers, FE-SEM provides images that are three to six times clearer and less electrostatically distorted than those produced by traditional scanning electron microscopy (SEM). We developed a novel series of imidazopyri(mi)dine-based sulfonamides and were curious to observe the 3D structure and morphology. The compound 10q was preferred for FE-SEM and Energy-dispersive X-ray analysis (EDAX), as we could generate crystals of this very compound that was utilized for X-RD. Therefore, 10q was chosen for these studies to establish a correlation between each of the studies undertaken (Figure S43 a-c). This FE-SEM analysis helped determine whether the compound is amorphous or crystalline owing to its surface morphology. When FE-SEM images of 10q were analyzed, it was found that the representative synthesized compound particle had dimensions of 21.65µm and 25.77µm, respectively. As work went on, it became clear that the morphological analysis was focused on the manufactured molecule's uniform size and crystal-like surface shape. The surface morphology of the molecule was sheet-like.

EDAX confirmed the presence of elements with accurate percentages further simplifying and aiding in correct structural elucidation. It showed that 10q had Carbon (weight% of 39.38 and atomic% of 56.28), Nitrogen (weight% of 27.36 and atomic% of 14.65), Oxygen (weight% of 14.31 and atomic% of 7.62), Sulfur (weight% of 11.86 and atomic% of 14.53) and Chlorine (weight% of 7.10 and atomic% of 6.93) are at par with the chemical formula $C_{17}H_{17}CIN_4O_3S_2$ of 10q (Figure S43 d).

11. Molecular dynamic simulation data for 9b-PKM2 interaction

FIGURE S47: d) The RMSD graph of only PKM2 (apo), f) the RMSF graph of only PKM2, g) the RMSF graph of 9b at the activator binding site of PKM2 protein (PDB id 3GR4) after a molecular dynamics simulation of 100 ns.

12. Data related to single crystal X-ray diffraction analysis of compound 10q

Empirical formula	$C_{17}H_{17}CIN_4O_3S_2$
Formula weight	424.91
Temperature/K	299.0
Crystal system	triclinic
Space group	P-1
a/Å	6.6727(9)
b/Å	10.1859(14)
c/Å	14.367(2)
α/°	85.903(5)
β/°	80.316(5)
γ/°	73.428(5)
Volume/Å ³	922.3(2)
Ζ	2
$\rho_{calc}g/cm^3$	1.530
μ/mm ⁻¹	0.461

Table S1. C	Crystal data and	structure	refinement	for com	nound	10a.
Table ST. C	h ystai uata anu	Suucuie	rennement	IOI COM	pounu	TOA.

F(000)	440.0
Crystal size/mm ³	0.214 × 0.21 × 0.182
Radiation	$M_{o}K_{\alpha}$ ($\lambda = 0.71073$)
20 range for data collection/°	2.876 to 58.58
Index ranges	$-8 \le h \le 8$, $-13 \le k \le 13$, $-19 \le l \le 18$
Reflections collected	25692
Independent reflections	4319 [R _{int} = 0.0615, R _{sigma} = 0.0349]
Data/restraints/parameters	4319/0/244
Goodness-of-fit on F ²	1.131
Final R indexes $[I \ge 2\sigma (I)]$	R1 = 0.0600, wR ₂ = 0.1466
Final R indexes [all data]	$R1 = 0.0662, wR_2 = 0.1524$
Largest diff. peak/hole / e Å	0.63/-0.81

Table S2. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å2×10³) for compound 10q. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq)
S2	-531.8(8)	5319.7(4)	7349.4(3)	40.41(16)
S1	2640.3(10)	4615.2(7)	8698.0(4)	55.22(19)
Cl1	4270.5(13)	3003.0(10)	10339.6(5)	92.5(3)
O3	7767(2)	1057.0(16)	4665.4(10)	47.9(4)
O2	-2696(2)	5335.5(18)	7409.3(12)	56.5(4)
01	56(3)	6564.8(15)	7242.6(12)	58.5(4)
N3	9670(2)	404.1(14)	2730.2(10)	33.0(3)
N2	3461(2)	2341.4(15)	5194.5(10)	33.6(3)
N1	786(2)	4377.0(15)	6447.7(11)	35.8(3)
N4	8031(3)	950(2)	1451.2(12)	54.9(5)
C10	6671(3)	1287.3(18)	4040.3(12)	33.6(4)
C6	1164(3)	2551(2)	5384.2(14)	38.9(4)
C12	6631(3)	1356(2)	2241.4(14)	45.8(5)
C11	7549(3)	1045.4(18)	3054.6(12)	34.2(4)
C9	4275(3)	1783(2)	4256.1(13)	40.6(4)
C5	289(3)	3074.3(19)	6371.4(14)	39.9(4)
C17	11356(3)	-121.3(19)	3206.0(14)	38.9(4)
C8	3073(3)	4220(2)	6244.6(14)	40.7(4)
C3	-477(4)	3564(2)	8913.5(16)	54.7(5)
C13	9876(3)	361(2)	1755.2(13)	42.2(4)
C7	3919(3)	3648(2)	5263.7(13)	40.2(4)
C4	381(3)	4460(2)	8354.4(13)	41.6(4)
C16	13282(3)	-698(2)	2702.3(17)	48.9(5)
C14	11882(4)	-240(2)	1238.2(16)	54.1(5)
C2	704 (5)	2990(3)	9646.7(17)	66.8(7)
C1	2402(4)	3459(3)	9607.2(15)	59.3(7)
C15	13557(4)	-752(2)	1711.1(18)	56.6(6)

Atom	U ₁₁	U ₂₂	U33	U ₂₃	U ₁₃	U ₁₂
S2	46.9(3)	33.6(2)	33.4(2)	1.50(17)	-5.96(19)	-0.19(19)
S1	55.9(3)	69.1(4)	39.1(3)	-2.6(2)	-11.2(2)	-12.4(3)
Cl1	85.3(5)	123.6(7)	42.0(3)	-6.4(4)	-25.9(3)	23.7(5)
O3	42.5(7)	66.3(9)	32.4(7)	-2.5(6)	-13.4(6)	-6.6(6)
02	41.7(8)	64.4(10)	51.1(9)	-5.0(7)	-7.0(7)	5.5(7)
O 1	87.1(12)	32.5(7)	50.6(9)	0.3(6)	-9.5(8)	-9.3(7)
N3	36.4(7)	32.3(7)	30.2(7)	2.8(5)	-5.6(6)	-10.1(6)
N2	34.4(7)	38.0(7)	29.7(7)	-2.0(6)	-3.7(6)	-12.4(6)
N1	40.1(8)	34.7(7)	31.0(7)	0.5(6)	-0.6(6)	-10.9(6)
N4	52.3(10)	76.6(13)	29.0(8)	5.4(8)	-7.5(7)	-8.2(9)
C10	36.5(8)	34.9(8)	29.8(8)	2.3(6)	-8.5(7)	-9.3(7)
C6	36.1(9)	44.1(9)	39.1(9)	-5.5(7)	-4.6(7)	-15.1(7)
C12	40.5(10)	61.3(12)	31.2(9)	6.3(8)	-9.4(7)	-6.9(9)
C11	34.2(8)	38.3(9)	29.7(8)	4.7(6)	-6.8(7)	-10.1(7)
C9	35.3(9)	52.8(11)	32.7(9)	-6.4(8)	-7.0(7)	-8.5(8)
C5	39.2(9)	40.3(9)	40.8(10)	-2.0(7)	1.9(7)	-16.5(7)
C17	37.9(9)	37.8(9)	42.9(10)	0.6(7)	-11.4(7)	-11.1(7)
C8	45.1(10)	43.5(10)	37.2(9)	-5.1(7)	0.8(8)	-21.2(8)
C3	58.5(13)	55.3(12)	43.2(11)	8.8(9)	-0.5(9)	-11.2(10)
C13	47.8(10)	45.0(10)	31.2(9)	1.1(7)	-3.3(8)	-10.7(8)
C7	45.9(10)	42.3(9)	34.4(9)	-0.8(7)	2.9(7)	-20.8(8)
C4	46.2(10)	40.7(9)	31.1(9)	0.1(7)	-3.5(7)	-2.9(8)
C16	38.6(10)	44.4(10)	61.6(13)	-6.0(9)	-11.5(9)	-4.8(8)
C14	54.8(12)	57.6(12)	42.1(11)	-6.8(9)	5.1(9)	-9.0(10)
C2	78.1(17)	62.2(14)	41.0(12)	15.2(10)	1.0(11)	1.3(12)
C1	59.3(13)	68.2(14)	30.1(9)	-4.2(9)	-6.1(9)	15.0(11)
C15	44.6(11)	53.4(12)	63.6(14)	-14.0(10)	4.3(10)	-4.8(9)

Table S3. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for compound 10q. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom Atom Length/Å			Aton	Atom Atom Leng		
S2	O2	1.4280(17)	N1	C8	1.469(2)	
S2	01	1.4218(16)	N4	C12	1.350(3)	
S2	N1	1.6390(16)	N4	C13	1.338(3)	
S2	C4	1.7417(19)	C10	C11	1.448(2)	
S1	C4	1.714(2)	C10	C9	1.517(2)	
S1	C1	1.713(3)	C6	C5	1.513(3)	
Cl1	C1	1.708(2)	C12	C11	1.385(2)	
03	C10	1.221(2)	C17	C16	1.356(3)	
N3	C11	1.393(2)	C8	C7	1.519(3)	
N3	C17	1.372(2)	C3	C4	1.358(3)	
N3	C13	1.387(2)	C3	C2	1.414(3)	
N2	C6	1.466(2)	C13	C14	1.407(3)	
N2	C9	1.457(2)	C16	C15	1.408(3)	
N2	C7	1.461(2)	C14	C15	1.362(3)	
N1	C5	1.472(2)	C2	C1	1.341(4)	

Table S4. List of bond lengths for compound 10q.

Table S5. List of bond angles for compound 10q.

Atom Atom Atom		Atom	Angle/°	Atom Atom Atom			Angle/°
O2	S2	N1	106.82(9)	N3	C11	C10	124.15(15)
O2	S2	C4	107.60(10)	C12	C11	N3	104.22(16)
01	S2	O2	120.46(11)	C12	C11	C10	131.63(17)
01	S2	N1	106.93(9)	N2	C9	C10	114.20(15)
01	S2	C4	107.66(10)	N1	C5	C6	108.45(15)
N1	S2	C4	106.64(8)	C16	C17	N3	118.61(19)
C1	S1	C4	89.94(12)	N1	C8	C7	108.99(16)
C17	N3	C11	131.15(16)	C4	C3	C2	112.1(2)
C17	N3	C13	122.15(16)	N3	C13	C14	118.84(19)
C13	N3	C11	106.70(15)	N4	C13	N3	111.39(17)
C9	N2	C6	109.10(14)	N4	C13	C14	129.8(2)
C9	N2	C7	110.93(15)	N2	C7	C8	110.58(15)
C7	N2	C6	109.19(14)	S1	C4	S2	121.17(12)
C5	N1	S2	116.30(12)	C3	C4	S2	126.09(18)
C8	N1	S2	116.52(13)	C3	C4	S1	112.64(17)
C8	N1	C5	111.92(14)	C17	C16	C15	120.9(2)
C13	N4	C12	104.98(17)	C15	C14	C13	118.9(2)
03	C10	C11	122.65(17)	C1	C2	C3	111.8(2)
O3	C10	C9	121.71(16)	Cl1	C1	S1	119. <mark>46(</mark> 19)
C11	C10	C9	115.58(15)	C2	C1	S1	113.57(18)
N2	C6	C5	110.24(15)	C2	C1	Cl1	127.0(2)
N4	C12	C11	112.71(18)	C14	C15	C16	120.6(2)

Table S6. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for compound 10q.
Atom	x	y	z	U(eq)
H6A	847.24	1693.07	5320.2	47
H6B	498.76	3207.62	4927.46	47
H12	5203.71	1796.45	2239.89	55
H9A	3769.48	2482.58	3789.89	49
H9B	3704.51	1023.52	4193.14	49
H5A	-1231.54	3215.18	6493.44	48
H5B	918.35	2409.98	6832.55	48
H17	11180.84	-82.37	3860.43	47
H8A	3780.29	3602.29	6709.43	49
H8B	3343.84	5100.49	6276.3	49
H3	-1697.78	3352.56	8824.72	66
H7A	3273.09	4296.21	4798.12	48
H7B	5436.52	3517.01	5130.51	48
H16	14437.17	-1063.45	3015.84	59
H14	12060.94	-286.62	584.17	65
H2	346	2363.83	10101	80
H15	14893.18	-1141.31	137 <mark>6.4</mark> 7	68

Table S7. A compendium of the results obtained through docking, lactate dehydrogenase coupled enzyme assay and in vitro screening of A549 human adenocarcinoma cell line where PKM2 is overexpressed. All the compounds were evaluated against normal lung epithelial cell line BEAS-2B to establish their cancer specificity.*

S. No.	Compound Code	Isolated yield in %	IC ₅₀ (μM)- A549	IC ₅₀ (μM) – BEAS-2B	Z	Y	AC ₅₀ (PKM2) in μM [#]	IC ₅₀ (PKM2) in μM [#]	Docking score -activator
									binding
									site (Kcal/mol)
1	9a	63	1.00±0.365	39.55±5.35	N	Ph-Me	0.1049±0.058		-8.59
2	9b	68	0.91±0.314	59.46±4.53	Ν	Ph	0.03007±0.083		-8.09
3	9c	72	1.47±0.141	44.99±6.76	Ν	Thiophene	0.0935±0.060		-7.80
4	9d	78	1.23±1.217	15.87±3.77	Ν	4-CF ₃ -Ph	0.2109±0.071		-8.16
5	9e	71	1.33±0.069	20.81±4.57	Ν	4-Br-Ph	0.5305±0.019		-8.24
6	9f	80	1.48±0.140	19.97±5.42	Ν	4-F-Ph	0.7034±0.047		-8.83
7	9g	66	1.48±0.054	28.43±5.86	Ν	4-OMe-Ph	0.5354±0.0081		-8.48
8	9h	74	1.26±0.16	26.46±8.21	Ν	2,5-dichloro-Ph	0.6478±0.049		-8.20
9	9i	81	1.06±0.267	51.35±8.55	Ν	2,4,6-trimethyl-Ph	0.7253±0.021		-9.33

10	9j	69	1.54±0.111	39.07±8.62	Ν	5-Br,2-Ome-Ph	0.6428±0.041		-7.18
11	9k	62	1.14±0.498	38.98±8.17	Ν	3-Br-Ph	0.6340±0.076		-8.75
12	91	63	1.54±0.087	39.04±8.73	N	Cyclohexyl		0.7829±0.031	-7.54
13	9m	60	1.60±0.048	36.47±7.00	N	5-Br-thiophene		0.6806±0.030	-7.87
14	9n	70	1.76±0.069	53.45±6.84	N	Cyclopropyl	0.0923±0.059		-7.07
15	90	61	1.72±0.059	46.32±5.04	N	2-cyano-Ph	0.5153±0.002		-8.53
16	9p	75	1.72±0.070	16.78±5.3	N	2-Cl,4-F-Ph	0.6121±0.415		-8.87
17	9q	77	1.75±0.043	9.29±3.76	N	5-Cl-thiophene	0.4372±0.089		-7.81
18	9r	79	1.60±0.061	9.13±4.81	N	4'-OMe-Biphenyl	0.4347±0.566		-8.26
19	9s	66	1.66±0.048	66.92±6.01	N	4-NO ₂ -Ph		0.0388±0.089	NA
20	10a	75	1.67±0.113	51.15±5.82	СН	Ph-Me	0.7955±0.055		-7.24
21	10b	74	1.69±0.074	44.68±4.49	СН	Ph	0.1410±0.630		-7.18
22	10c	69	1.14±0.277	30.47±8.41	СН	Thiophene	0.1340±0.079		-8.75
23	10d	69	1.30±0.145	61.36±9.97	СН	4-CF ₃ -Ph	0.550±0.044		-7.54
24	10e	64	1.74±0.074	64.24±5.33	СН	4-Br-Ph	0.1462±0.060		-7.87
25	10f	69	1.68±0.065	52.22±8.50	СН	4-F-Ph	0.382±0.056		-7.07
26	10g	79	1.83±0.053	46.05±5.58	СН	4-OMe-Ph	0.0416±0.048		-8.53
27	10h	72	1.50±0.084	45.95±9.06	СН	2,5-dichloro-Ph		0.6158±0.065	-7.81
28	10i	80	1.68±0.039	11.47±3.59	СН	2,4,6-trimethyl-Ph	0.1806±0.021		-9.10
29	10j	70	1.44±0.084	30.92±8.10	СН	5-Br,2-OMe-Ph	0.3285±0.035		-6.50
30	10k	77	1.67±0.120	39.90±5.16	СН	3-Br-Ph	0.6060±0.064		-8.73
31	101	78	1.65±0.068	60.57±7.60	СН	Cyclohexyl	0.889±0.049		-5.14
32	10m	62	1.67±0.049	45.69±10.74	СН	5-Br-thiophene		0.1382±0.063	-8.17
33	10n	78	1.24±0.171	50.54±7.04	СН	Cyclopropyl	0.432±0.017		-7.40
34	100	66	1.51±0.105	55.67±2.88	СН	2-cyano-Ph	0.1465±0.071		-8.64
35	10p	62	0.95±0.366	37.80±4.73	СН	2-Cl,4-F-Ph	0.2046±0.071		-9.35
36	10q	77	1.32±0.170	48.90±7.90	СН	5-Cl-thiophene	0.5517±0.017		-6.12
37	10r	73	1.23±0.216	56.52±5.19	СН	4'-OMe-Biphenyl		0.341±0.036	-8.13
I									

38 10s 65 1.46±0.118 20.09±6.58 CH4-NO₂-Ph $0.6492{\pm}0.089$ NA 39 Doxorubici $1.64{\pm}0.101 \quad 24.67{\pm}7.36$ n DASA-58 1.46±0.27 35.23±3.36 0.020 ± 0.010 -8.279 40 (Std. PKM2 activator) 41 0.055 ± 0.042 Lphenylalani (Std. ne PKM2 inhibitor)

*This combined data set was analyzed for compound selection from the entire series, in case of further studies. The results of the LDH coupled enzyme assay and the cytotoxicity assay are expressed as mean \pm SEM done in triplicate.

13. Chemical Structures of the synthesized compounds

: 104.9 ± 0.058 nM AC_{50 (PKM2)} : 1000.0 ± 0.365 nM IC50 (A549) IC_{50 (BEAS-2B)}: 39550.0 ± 5.35 nM

9e (71%) _{M2)} : 530.5 ± 0.019 nM AC_{50 (PKM2)} IC_{50 (A549)} : 1330.0 ± 0.069 nM IC_{50 (BEAS-2B)}: 20810.0 ± 4.57 nM

AC_{50 (PKM2)} : 725.3 ± 0.021 nM IC_{50 (A549)} : 1060.0 ± 0.267 nM IC_{50 (BEAS-2B)}: 51350.0 ± 8.55 nM

B

 $\begin{array}{r} 9q~(77\%) \\ AC_{50~(PKM2)} & :~437.2 \pm 0.089~nM \\ IC_{50~(A549)} & :~1750.0 \pm 0.043~nM \end{array}$

IC_{50 (BEAS-2B)}: 9290.0 ± 3.76 nM

IC_{50 (PKM2)} : 680.6 ± 0.030 nM IC_{50 (A549)} : 1600.0 ± 0.048 nM IC_{50 (BEAS-2B)}: 36470.0 ± 7.00 nM

9b (68%)

9f (80%)

IC_{50 (BEAS-2B)}: 19970.0 ± 5.42 nM

: 703.4 ± 0.047 nM

: 1480.0 ± 0.140 nM

OCH₃ 11

,o

ó

Br

AC_{50 (PKM2)}

IC_{50 (A549)}

AC_{50 (PKM2)} : 923.0 ± 0.059 nM IC_{50 (A549)} : 1760.0 ± 0.069 nM IC_{50 (BEAS-2B)}: 53450.0 ± 6.84 nM

9r (79%) AC_{50 (PKM2)} : 434.7 ± 0.566 nM IC_{50 (A549)} : 1600.0 ± 0.061 nM IC_{50 (BEAS-2B)}: 9130.0 ± 4.81 nM

F₃C

 $\begin{array}{l} AC_{50} \ (\mbox{\tiny PKM2}) & : \ 93.5 \pm 0.060 \ \mbox{\scriptsize nM} \ \ AC_{50} \ (\mbox{\tiny PKM2}) & : \ 210.9 \pm 0.071 \ \mbox{\scriptsize nM} \\ IC_{50} \ (\mbox{\scriptsize nS4}) & : \ 1470.0 \pm 0.141 \ \mbox{\scriptsize nM} \ \ IC_{50} \ (\mbox{\scriptsize nS4}) & : \ 1230.0 \pm 1.217 \ \mbox{\scriptsize nM} \\ IC_{50} \ (\mbox{\scriptsize nS4}) & : \ 144990.0 \pm 6.76 \ \ \mbox{\scriptsize nM} \ \ \ IC_{50} \ (\mbox{\scriptsize nS4}) & : \ 15870.0 \pm 3.77 \ \ \mbox{\scriptsize nM} \end{array}$

IC 50 (A549)

AC_{50 (PKM2)} : 535.4 ± 0.0081 nM

9k (62%) AC_{50 (PKM2)} : 634.0 ± 0.076 nM IC_{50 (A549)} : 1140.0 ± 0.498 nM IC_{50 (BEAS-2B)}: 38980.0 ± 8.17 nM

ó 91 (63%) IC_{50 (PKM2)} : 782.9 ± 0.031 nM IC_{50 (A549)} : 1540.0 ± 0.087 nM IC_{50 (BEAS-2B)}: 39040.0 ± 8.73 nM

: 1260.0 ± 0.16 nM IC_{50 (BEAS-2B)}: 26460.0 ± 8.21 nM

CI

0

9p (75%) AC50 (PKM2) : 515.3 ± 0.002 nM AC50 (PKM2) : 612.1 ± 0.415 nM : 1720.0 ± 0.059 nM IC_{50 (A549)} : 1720.0 ± 0.070 nM IC_{50 (BEAS-2B)}: 46320.0 ± 5.04 nM IC_{50 (BEAS-2B)}: 16780.0 ± 5.3 nM

9s (66%) : 38.8 ± 0.089 nM IC_{50 (PKM2)} : 1660.0 ± 0.048 nM IC_{50 (A549)} IC_{50 (BEAS-2B)}: 66920.0 ± 6.01 nM

90 (61%) IC_{50 (A549)}

S-111

10a (75%) 10b (74%) AC_{50 (PKM2)} : 795.5 ± 0.055 nM AC_{50 (PKM2)} : 141.0 ± 0.630 nM : 1670.0 ± 0.113 nM IC_{50 (A549)} : 1690.0 ± 0.074 nM IC_{50 (A549)} IC_{50 (BEAS-2B)}: 51150.0 ± 5.82 nM IC_{50 (BEAS-2B)}: 44680.0 ± 4.49 nM

146.2 ± 0.060 nM $AC_{50 (PKM2)}$: 382.0 ± 0.056 nM AC_{50 (PKM2)} : IC_{50 (A549)} : 1740.0 ± 0.074 nM IC_{50 (BEAS-2B)}: 64240.0 ± 5.33 nM

10i (80%) 10i (70%) : 180.6 ± 0.021 nM AC_{50 (PKM2)} : 328.5 ± 0.035 nM AC_{50 (PKM2)} : 1680.0 ± 0.039 nM IC_{50 (A549)} IC_{50 (A549)} : 1440.0 ± 0.084 nM IC_{50 (BEAS-2B)}: 11470.0 ± 3.59 nM IC_{50 (BEAS-2B)}: 30920.0 ± 8.10 nM

: 138.2 ± 0.063 nM AC_{50 (PKM2)} : 432.0 ± 0.017 nM

: 1670.0 ± 0.049 nM IC_{50 (A549)}

10q (77%) 551.7 ± 0.017 nM

: 1320.0 ± 0.170 nM

IC_{50 (BEAS-2B)}: 48900.0 ± 7.90 nM

 $IC_{50 (BEAS-2B)}$: 45690.0 ± 10.74 nM $IC_{50 (BEAS-2B)}$: 50540.0 ± 7.04 nM

AC_{50 (PKM2)} :

IC_{50 (A549)}

IC 50 (PKM2)

IC_{50 (A549)}

10n (78%)

: 1240.0 ± 0.171 nM

IC_{50 (A549)} IC_{50 (BEAS-2B)}: 30470.0 ± 8.41 nM IC_{50 (BEAS-2B)}: 61360.0 ± 9.97 nM

AC_{50 (PKM2)} : 41.6 ± 0.048 nM IC_{50 (PKM2)} : 615.8 ± 0.065 nM : 1830.0 ± 0.053 nM IC_{50 (A549)} IC_{50 (A549)} : 1500.0 ± 0.084 nM $\text{IC}_{50\;(\text{BEAS-2B})}: 46050.0 \pm 5.58 \; \text{nM} \; \; \text{IC}_{50\;(\text{BEAS-2B})}: 45950.0 \pm 9.06 \; \text{nM}$

101 (78%) 10k (77%) : 889.0 ± 0.049 nM AC_{50 (PKM2)} : 606.0 ± 0.064 nM AC_{50 (PKM2)} IC_{50 (A549)} : 1670.0 ± 0.120 nM IC_{50 (A549)} : 1650.0 ± 0.068 nM IC_{50 (BEAS-2B)}: 39900.0 ± 5.16 nM IC_{50 (BEAS-2B)}: 60570.0 ± 7.60 nM

10p (62%) AC50 (PKM2) : 146.5 ± 0.071 nM AC50 (PKM2) : 204.6 ± 0.071 nM : 1510.0 ± 0.105 nM IC_{50 (A549)} : 950.0 ± 0.366 nM IC_{50 (A549)} IC 50 (BEAS-2B) : 55670.0 ± 2.88 nM IC 50 (BEAS-2B) : 37800.0 ± 4.73 nM

0₂|

: 341.0 ± 0.036 nM IC_{50 (PKM2)} : 1230.0 ± 0.216 nM IC 50 (A549) IC_{50 (BEAS-2B)}: 56520.0 ± 5.19 nM

Figure S48. Chemical structures of imidazopyrimidine-flanked sulfonamide derivatives (9a-9s) and imidazopyridine-flanked sulfonamide derivatives (10a-10s) along with their respective isolated yields. The AC₅₀(PKM2) represents the concentration at which 50% of the maximum activity of PKM2 is observed, while the IC₅₀(PKM2) indicates the concentration at which 50% of the maximum inhibition of PKM2 is achieved. The results from the lactate dehydrogenasecoupled enzyme assay and the cytotoxicity assay are expressed as the mean ± SEM of triplicate measurements. Compound 9b is the most promising candidate in the series due to its high potency and was consequently selected for further biological evaluation.