Human microbiome derived synthetic antimicrobial peptides with activity against Gram-negative, Gram-positive, and antibiotic resistant bacteria

Walaa Mousa,^{*a,c,d†} Ashif Shaikh,^{b†} Rose Ghemrawi,^{a,c} Mohammed Al-Dulaimi,^b Aya Al Ali,^{a,c} Nour Sammani,^{a,c} Mostafa Khair,^e Mohamed I. Helal,^f Farah Almarzooq,^g and Emilia Oueis^{*b,h}

E-mail: emilia.oueis@ku.ac.ae

walaa.mousa@aau.ac.ae

^{a.} College of Pharmacy, Al Ain University, Abu Dhabi, PO BOX 64141, United Arab Emirates.

- ^{b.} Department of chemistry, Khalifa University of Science and Technology, Abu Dhabi, PO BOX 127788, United Arab Emirates.
- ^{c.} AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, PO BOX 112612, United Arab Emirates.
- ^{d.} College of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
- ^{e.} Core Technology Platforms, New York University Abu Dhabi, PO BOX 127788, United Arab Emirates.
- ^{f.} Electron Microscopy Core Labs, Khalifa University of Science and Technology, Abu Dhabi, PO BOX 127788, United Arab Emirates.
- ^{g.} Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, UAE University, Al Ain P.O. Box 15551, United Arab Emirates.
- ^{h.} Healthcare engineering innovation group, Khalifa University of Science and Technology, Abu Dhabi, PO BOX 127788, United Arab Emirates.
- + These authors contributed equally to this work.

Table of Contents

Predicted secondary structure and data of peptides	S2
Marfey's Analysis of cyclic peptides	S4
Structures, LC chromatograms, and HRMS spectra of the synthesized peptides	S5
MS/MS fragmentation data of LM6 and its cyclic derivatives LM13a and LM13b	S19

Predicted secondary structure and data of peptides

Figure S1. A) Helical structure of lactomodulin as predicted by RoseTTA (A1), Quark (A2), and AlphaFold (A3); B) Amino acid sequence of lactomodulin split into five color-coded peptides LM1-LM5 (grey, orange, blue, green, and purple, respectively) and their structural prediction by PEP-FOLD3; C) Sequence of peptides LM6-LM9 obtained based on AMP prediction using CAMPr3 and their structural prediction by PEP-FOLD3.

Table S1. Novel Lactomodulin derivatives

No.	Sequence	Molecular formula	MW (g/mol)	m/z calcd [M+H] ⁺	m/z found [M+H]⁺	Δm (ppm)	Yield (%)	Purity (%)
LM1	MNKLNEVELSKI-NH ₂	$C_{61}H_{109}N_{17}O_{19}S$	1416.78	1416.7879	1416.7736	10.0933	15.1	76
LM2	SGGIGPLVIP-NH ₂	$C_{42}H_{73}N_{11}O_{11}$	908.18	908.5564	908.5530	3.7422	24.0	99
LM3	VAAILGFLAT-NH ₂	$C_{47}H_{79}N_{11}O_{11}$	974.27	974.6033	974.6000	3.3860	29.3	96
LM4	DAWNHADELV-NH ₂	$C_{51}H_{73}N_{15}O_{17}$	1168.28	1168.5382	1168.5320	5.3058	19.7	97
LM5	AGVKQGWERS-NH ₂	$C_{48}H_{77}N_{17}O_{14}$	1116.23	1116.5909	1116.5795	10.2096	19.4	99
LM6	LSKISGGIGPLVIPV-NH ₂	$C_{68}H_{121}N_{17}O_{17}$	1448.92	1448.9199	1448.9039	11.0427	10.8	98
LM7	IGPLVIPVAAIL-NH ₂	$C_{58}H_{103}N_{13}O_{12}$	1174.62	1174.7922	1174.7838	7.1502	19.5	97
LM8	KLNEVELSKISGG-NH ₂	$C_{59}H_{105}N_{17}O_{20}$	1372.67	1372.7774	1372.7755	1.3841	12.5	98
LM9	HADELVAGVKQ-NH ₂	$C_{50}H_{84}N_{16}O_{16}$	1165.38	1165.6324	1165.6274	4.2895	14.4	95
LM10	LSKISGGIGP-NH ₂	$C_{41}H_{74}N_{12}O_{12}$	927.18	927.5622	927.5567	5.9295	31.6	96
LM11	KISGGIGPLV-NH ₂	$C_{43}H_{78}N_{12}O_{11}$	939.24	939.5986	939.5935	5.4278	23.5	97
LM12	LSKISG-NH ₂	$C_{26}H_{50}N_8O_8$	602.77	603.3824	603.3814	1.6573	38.3	95
LM13a	Cyc(LSKISGGIGPLVIPv)	C ₆₈ H ₁₁₈ N ₁₆ O ₁₇	1431.79	1431.8934	1431.8863	4.9585	6.1	95
LM13b	Cyc(LSKISGGIGPLVIPV)	C ₆₈ H ₁₁₈ N ₁₆ O ₁₇	1431.79	1431.8934	1431.8873	4.2601	1.0	95

Marfey's Analysis of cyclic peptides

Figure S2. Extracted ion chromatogram of Marfey's derivatives (L-/D-FDLA) of L-Val, LM13a and LM13b at 368 Da in negative ion mode.

Table S2: Marfey's analysis of Valine amino acid in LM13a and LM13b

	L-FDLA derivative t _R (min)	D-FDLA derivative t_R (min)
L-Val	20.5	22.5
1 1 1 2 2	20.5	20.5
	22.5	22.5
LM13b	20.5	22.5

LM13 contains two valine residues. The Marfey's analysis show that the major compound LM13a has both I- and d-Valine residues within its structure, whereas the minor compound LM13b has only I-Valine within its structure. The d-Valine in LM13a is the result of the epimierization of the valine residue at the point of macrocyclization.

Structures, LC chromatograms, and HRMS spectra of the synthesized peptides A) LM1

Figure S3: A) LM1 peptide chemical structure, **B)** LC-UV chromatogram of LM1 at 220nm; tr = 11.81 min; 76% purity, **C)** HRMS-ESI-MS² spectrum in the positive mode of LM1 peak

lon	Found	Expected	Δm
MNKLNEVELSKI-NH ₂ + H ⁺	1416.7736	1416.7879	10.1 ppm
MNKLNEVELSKI-NH ₂ + Na ⁺	1438.7561	1438.7699	9.6 ppm
MNKLNEVELSKI-NH ₂ + 2H ⁺	708.8918	708.8976	8.2 ppm
LM1 I-NH ₂	1286.6649	1286.6773	9.6 ppm
LM1 KI-NH ₂	1158.5701	1158.5824	10.6 ppm
LM1 SKI-NH ₂	1071.5406	1071.5503	9.1 ppm

Table S3: MS peaks and MS² fragments observed for LM1

Exact Mass: 907.5491

Figure S4: A) LM2 peptide chemical structure, **B)** LC-UV chromatogram of LM2 at 220nm; $t_R = 13.82$ min; 99% purity, **C)** HRMS-ESI-MS² spectrum in the positive mode of LM2 peak.

Ion	Found	Expected	Δm
SGGIGPLVIP-NH ₂ + H ⁺	908.5530	908.5564	3.7 ppm
$(SGGIGPLVIP-NH_2)_2 + H^+$	1816.1020	1816.1055	1.9 ppm
SGGIGPLVIP-NH ₂ + 2H ⁺	454.7804	454.7819	3.3 ppm
LM2 P-NH ₂	794.4747	794.4771	3.0 ppm
LM2 IP-NH ₂	681.3916	681.3931	2.2 ppm
LM2 VIP-NH ₂ H ₂ O	564.3135	564.3141	1.1 ppm

Table S4: MS peaks and MS² fragments observed for LM2

Chemical Formula: C₄₇H₇₉N₁₁O₁₁ Exact Mass: 973.5961

Figure S5: A) LM3 peptide chemical structure, **B)** LC-UV chromatogram of LM3 at 220nm; $t_R = 14.90$ min; 96% purity, **C)** HRMS-ESI-MS² spectrum in the positive mode of LM3 peak.

lon	Found	Expected	Δm
VAAILGFLAT-NH ₂ + H ⁺	974.6000	974.6033	3.4 ppm
VAAILGFLAT-NH ₂ + Na ⁺	996.5820	996.5853	3.3 ppm
(VAAILGFLAT-NH ₂) ₂ + H ⁺	1949.1989	1949.2028	2.0 ppm
(VAAILGFLAT-NH ₂) ₂ + Na ⁺	1971.1816	1971.1847	1.6 ppm
VAAILGFLAT-NH ₂ + 2H ⁺	487.8039	487.8053	2.9 ppm
LM3 T-NH ₂	856.5267	856.5291	2.8 ppm
LM3 AT-NH ₂	785.4900	785.4920	2.5 ppm
LM3 LAT-NH ₂	672.4063	672.4080	2.5 ppm

Table S5: MS peaks and MS² fragments observed for LM3

 $\begin{array}{l} \mbox{Chemical Formula: } C_{51}H_{73}N_{15}O_{17} \\ \mbox{Exact Mass: } 1167.5309 \end{array}$

Figure S6: A) LM4 peptide chemical structure, **B)** LC-UV chromatogram of LM4 at 220nm; $t_R = 15.95$ min; 97% purity, **C)** HRMS-ESI-MS² spectrum in the positive mode of LM4 peak.

lon	Found	Expected	Δm	
DAWNHADELV-NH ₂ + H ⁺	1168.5320	1168.5382	5.3 ppm	
DAWNHADELV-NH ₂ + Na ⁺	1190.5161	1190.5202	3.4 ppm	
DAWNHADELV-NH ₂ + 2H ⁺	584.7705	584.7727	3.8 ppm	
LM4 V-NH ₂	1052.4380	1052.4432	4.9 ppm	
LM4 LV-NH ₂	939.3547	939.3592	4.8 ppm	
LM4 ELV-NH ₂	810.3134	810.3166	3.9 ppm	
LM4 DELV-NH ₂	695.2872	695.2896	3.5 ppm	
LM4 ADELV-NH ₂	624.2506	624.2525	3.0 ppm	

Table S6: MS peaks and MS² fragments observed for LM4

Figure S7: A) LM5 peptide chemical structure, **B)** LC-UV chromatogram of LM5 at 220nm; $t_R = 6.41$ min; 99% purity, **C)** HRMS-ESI-MS² spectrum in the positive mode of LM5 peak.

lon	Found	Expected	Δm
AGVKQGWERS-NH ₂ + H ⁺	1116.5795	1116.5909	10.2 ppm
AGVKQGWERS-NH ₂ + 2H ⁺	558.7941	558.7991	8.9 ppm
LM5 S-NH ₂	1012.5203	1012.5323	11.9 ppm
LM5 AGV + H ⁺	889.4544	889.4639	10.7 ppm
LM5 AGVK + H ⁺	761.3609	761.3690	10.6 ppm
LM5 AGVKQGW + H ⁺	390.2058	390.2096	9.7 ppm

Table S7: MS peaks and MS² fragments observed for LM5

A) LM6

Exact Mass: 1448.8967

Figure S8: A) LM6 peptide chemical structure, **B)** LC-UV chromatogram of LM6 at 220nm; $t_R = 14.51$ min; 98% purity, **C)** HRMS-ESI-MS² spectrum in the positive mode of LM6 peak.

lon	Found	Expected	Δm
LSKISGGIGPLVIPV-NH ₂ + H ⁺	1448.9039	1448.9199	11.0 ppm
LSKISGGIGPLVIPV-NH ₂ + Na ⁺	1470.8867	1470.9019	10.3 ppm
LSKISGGIGPLVIPV-NH ₂ + 2H ⁺	724.9565	724.9636	9.8 ppm
LM6 CO-NH ₂	1403.8853	1403.8985	9.4 ppm
LM6 V-NH ₂	1332.8122	1332.8250	9.6 ppm
LM6 PV-NH ₂	1235.7593	1235.7722	10.4 ppm
LM6 IPV-NH ₂	1122.6756	1122.6882	11.2 ppm
LM6 IGPLVIPV-NH ₂	643.3703	643.3774	11.0 ppm

 $\begin{array}{c} \mbox{Chemical Formula: } C_{58}H_{103}N_{13}O_{12} \\ \mbox{Exact Mass: } 1173.7849 \end{array}$

Figure S9: A) LM7 peptide chemical structure, **B)** LC-UV chromatogram of LM7 at 220nm; tR = 15.83 min; 97% purity, **C)** HRMS-ESI-MS² spectrum in the positive mode of LM7 peak.

lon	Found	Expected	Δm
IGPLVIPVAAIL-NH ₂ + H ⁺	1174.7838	1174.7922	7.2 ppm
IGPLVIPVAAIL-NH ₂ + Na ⁺	1196.7665	1196.7742	6.4 ppm
IGPLVIPVAAIL-NH ₂ + K ⁺	1212.7397	1212.7481	6.9 ppm
(IGPLVIPVAAIL-NH ₂) ₃ + 2H ⁺	1762.1749	1762.1864	6.5 ppm
(IGPLVIPVAAIL-NH ₂) ₂ + H ⁺	2349.5687	2349.5805	5.0 ppm
IGPLVIPVAAIL-NH ₂ + 2H ⁺	587.8960	587.8998	6.5 ppm
LM7 L-NH ₂	1044.6744	1044.6816	6.9 ppm
LM7 IL-NH ₂	931.5912	931.5976	6.9 ppm
LM7 AIL-NH ₂	860.5550	860.5605	6.4 ppm
LM7 AAIL-NH ₂	789.5181	789.5233	6.6 ppm

Table S9: MS peaks and MS² fragments observed for LM7

Figure S10: A) LM8 peptide chemical structure, **B)** LC-UV chromatogram of LM8 at 220nm; $t_R = 14.98$ min; 98% purity, **C)** HRMS-ESI-MS² spectrum in the positive mode of LM8 peak.

I	0		
lon	Found	Expected	Δm
KLNEVELSKISGG-NH ₂ + H ⁺	1372.7774	1372.7795	1.5 ppm
KLNEVELSKISGG-NH ₂ + Na ⁺	1394.7594	1394.7614	1.4 ppm
KLNEVELSKISGG-NH ₂ + K ⁺	1410.7302	1410.7354	3.7 ppm
LM8 GG-NH ₂	1241.7084	1241.7100	1.3 ppm
LM8 ISGG-NH ₂	1041.5924	1041.5939	1.4 ppm
LM8 KISGG-NH ₂	913.4970	913.4990	2.2 ppm
LM8 SKISGG-NH ₂	826.4655	826.4669	1.7 ppm

Table S10: MS peaks and MS² fragments observed for LM8

Exact Mass: 1164.6251

Figure S11: A) LM9 peptide chemical structure, **B)** LC-UV chromatogram of LM9 at 220nm; $t_R = 9.41$ min; 95% purity, **C)** HRMS-ESI-MS² spectrum in the positive mode of LM9 peak.

Table S11: MS peak	ks and MS ² fragments o	bserved for LM9

lon	Found	Expected	Δm
HADELVAGVKQ-NH ₂ + H ⁺	1165.6274	1165.6324	4.3 ppm
HADELVAGVKQ-NH ₂ + 2H ⁺	583.3180	583.3199	3.3 ppm
LM9 Q-NH ₂	1020.5430	1020.5473	4.2 ppm
LM9 KQ-NH ₂	892.4489	892.4524	3.9 ppm
LM9 VKQ-NH ₂	793.3813	793.3839	3.3 ppm
LM9 GVKQ-NH ₂	736.3600	736.3625	3.4 ppm
LM9 AGVKQ-NH ₂	665.3227	665.3254	4.1 ppm
LM9 VAGVKQ-NH ₂	566.2552	566.2570	3.2 ppm
LM9 LVAGVKQ-NH ₂	453.1715	453.1729	3.1 ppm
LM9 HADEL + H ⁺	600.3805	600.3828	3.8 ppm
LM9 HADELV + H ⁺	501.3124	501.3144	4.0 ppm
LM9 HADELVA + H ⁺	430.2755	430.2773	4.2 ppm

Figure S12: A) LM10 peptide chemical structure, B) LC-UV chromatogram of LM10 at 220nm; tR = 13.63 min; 96% purity, **C)** HRMS-ESI-MS² spectrum in the positive mode of LM10 peak.

Table S12: MS peaks and MS	² fragments observed for LM10
----------------------------	--

lon	Found	Expected	Δm
LSKISGGIGP-NH ₂ + H ⁺	927.5567	927.5622	5.9 ppm
LSKISGGIGP-NH ₂ + Na ⁺	949.5391	949.5442	5.4 ppm
$(LSKISGGIGP-NH_2)_3 + 2H^+$	1391.3347	1391.3414	4.8 ppm
$(LSKISGGIGP-NH_2)_2 + H^+$	1854.1102	1854.1172	3.8 ppm
LSKISGGIGP-NH ₂ + 2H ⁺	464.2824	464.2848	5.2 ppm
LM10 P-NH ₂	813.4781	813.4829	5.9 ppm
LM10 GP-NH ₂	756.4573	756.4615	5.6 ppm
LM10 IGP-NH ₂	643.3743	643.3774	4.8 ppm
LM10 GGIGP-NH ₂	529.3322	529.3345	4.3 ppm

Exact Mass: 938.5913

Figure S13: A) LM11 peptide chemical structure, **B)** LC-UV chromatogram of LM11 at 220nm; $t_R = 17.32 \text{ min}$; 97% purity, **C)** HRMS-ESI-MS² spectrum in the positive mode of LM11 peak.

lon	Found	Expected	Δm
KISGGIGPLV-NH ₂ + H ⁺	939.5935	939.5986	5.4 ppm
KISGGIGPLV-NH ₂ + Na ⁺	961.5761	961.5806	4.7 ppm
(KISGGIGPLV-NH ₂) ₂ + H ⁺	1878.1840	1878.1899	3.1 ppm
KISGGIGPLV-NH ₂ + 2H ⁺	470.3007	470.3030	4.9 ppm
LM11 V-NH ₂	823.5037	823.4989	5.8 ppm
LM11 LV-NH ₂	710.4158	710.4196	5.3 ppm
LM11 PLV-NH ₂	613.3636	613.3668	5.2 ppm
LM11 GPLV-NH ₂	556.3430	556.3454	4.3 ppm

A) LM12

NL: 1.58E5 UV_VIS_1 UV MD016_T2 _TC

2000

Figure S14: A) LM12 peptide chemical structure, B) LC-UV chromatogram of LM12 at 220nm; tR = 9.94 min; 95% purity, **C)** HRMS-ESI-MS² spectrum in the positive mode of LM12 peak.

Table S14: MS peaks and MS	² fragments observed for LM12
----------------------------	--

lon	Found	Expected	Δm
LSKISG-NH ₂ + H ⁺	603.3814	603.3824	1.7 ppm
LSKISG-NH ₂ + Na ⁺	625.3637	625.3644	1.1 ppm
LSKISG-NH ₂ + K ⁺	641.3373	641.3384	1.7 ppm
$(LSKISG-NH_2)_2 + H^+$	1205.7542	1205.7576	2.8 ppm
LM12 NH ₂	586.3549	586.3559	1.7 ppm
LM12 G-NH ₂	529.3336	529.3345	1.7 ppm
LM12 SG-NH ₂	442.3017	442.3024	1.6 ppm
LM12 L + H ⁺	490.2972	490.2984	2.4 ppm

Chemical Formula: C₆₈H₁₁₈N₁₆O₁₇ Exact Mass: 1430.88609

Figure S15: A) LM13a peptide chemical structure, **B)** LC-UV chromatogram of LM13a at 220nm; $t_R = 17.76 \text{ min}$; 95% purity, **C)** HRMS-ESI-MS² spectrum in the positive mode of LM13a peak.

lon	Found	Expected	Δm
Cyc(LSKISGGIGPLVIPv) + H ⁺	1431.8863	1431.8934	5.0 ppm
Cyc(LSKISGGIGPLVIPv) + Na ⁺	1453.8704	1453.8753	3.4 ppm
Cyc(LSKISGGIGPLVIPv) + 2H ⁺	716.4477	716.4503	3.6 ppm

Table S15: MS peaks observed for LM13a

Exact Mass: 1430.88609

Figure S16: A) LM13b peptide chemical structure, **B)** LC-UV chromatogram of LM13b at 220nm; tR = 18.35 min; 95% purity, **C)** HRMS-ESI-MS² spectrum in the positive mode of LM13b peak.

lon	Found	Expected	Δm
Cyc(LSKISGGIGPLVIPV) + H ⁺	1431.8873	1431.8934	4.3 ppm
Cyc(LSKISGGIGPLVIPV) + Na ⁺	1453.8715	1453.8753	2.6 ppm
Cyc(LSKISGGIGPLVIPV) + 2H ⁺	716.4480	716.4503	3.2 ppm

Table S16: MS peaks observed for LM13a

MS/MS fragmentation data of LM6 and its cyclic derivatives LM13a and LM13b

Figure S17: MS² fragmentation pattern and MS² spectrum of linear peptide LM6.

Ion	Observed m/z	lon	Observed m/z
b13	1235.7515	a8	728.4599
b12	1122.6769	b7	643.3734
b11	1023.6040	b5	529.3349
a11	995.6180	b4	442.3050
b9	813.4699	у3	327.2381
a9	785.4830	y2	214.1551
b8	756.4548	y1	117.1025

 Table S17: MS² fragments observed for LM6 (LSKISGGIGPLVIPV)

LM13a

MD016_CyclicPurePk2_B #2399 RT: 17.86 AV: 1 NL: 6.37E5 F: FTMS + p ESI d Full ms2 1431.8934@hcd30.00 [196.3333-2945.0000]

Figure S18: MS	S ² fragmentation	pattern of cyclic	peptide LM13a.
----------------	------------------------------	-------------------	----------------

lon	Additional	Observed m/z	lon	Observed m/z
LM13a	-CO	1403.8964	LM13a -IVLPGI	839.5005
LM13a -I / -L		1318.8057	LM13a -KSLVPI	794.4776
LM13a -I / -L	-CO	1290.8112	LM13a -IVLPGIGG	725.4554
LM13a -VL / -IV / -LV		1219.7365	LM13a -IVLPGIGGS	638.4217
LM13a -VL -IV / -LV	-CO	1191.7389	LM13a -GGSIKSLVP	593.4095
LM13a -VLP / -PIV / -LVP		1122.6906	LM13a -IVLPGIGGSI	525.3398
LM13a -VLPG		1065.6654	LM13a -IGGSIKSLVP	480.3174
LM13a -LVPI / -IVLP		1009.6015	LM13a -IGGSIKSLVPI	367.2330
LM13a -IVLPG / -VLPGI		952.5800	PVL / PLV / LVI / VIP	310.2119
LM13a -IVLPG / -VLPGI	-CO	924.5857	IP / PL	211.1430
LM13a -KSLVP		907.5642		

LM13b

1432.8793

Figure S19:	MS ² fragmentation	pattern of cycli	c peptide LM13b.
0			

lon	Additional	Observed m/z	lon	Additional	Observed m/z
LM13a -I / -L		1318.7905	LM13a -IVLPGIGGS	-H ₂ O	620.4110
LM13a -VL / -IV / -LV		1219.7368	LM13a -IVLPGIGGSI		525.3386
LM13a -VLP / -PIV / -LVP		1122.6755	LM13a -IGGSIKSLVP		480.3187
LM13a -LVPI / -IVLP		1009.5878	IPVL / LVIP / PLVI		423.2933
LM13a -IVLPG / -VLPGI		952.5773	PVLS		397.2423
LM13a -IVLPG / -VLPGI	-CO	924.5790	LSK / SKI / KIS		329.2177
LM13a -IVLPGI		839.4883	PVL/PLV/LVI/VIP		310.2123
LM13a -IKSLVP	-H ₂ O	776.4604	GPL / IGP		268.1648
LM13a -IVLPGIGG		725.4523	IP / PL		211.1430
LM13a -IKSLVPI		681.3889	PV		197.1282
LM13a -IVLPGIGGS		638.4219	PV	-CO	169.1338
			К		129.1021