Supplementary data

Design, synthesis, and biological evaluation of novel thiazole derivatives as PI3K/mTOR dual inhibitors

Samar I. Faggal¹, Yara El-Dash¹, Amr Sonousi^{1,2,*}, Amr M. Abdou³, Rasha A. Hassan¹

¹ Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo

11562, Egypt

² University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital,

Cairo, Egypt

³ Department of Microbiology and Immunology, National Research Centre, Dokki, Giza, 12622, Egypt

Correspondence to:

* Dr. Amr Sonousi
Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562,Egypt.
Address: Kasr El-Aini Street, Cairo, Egypt.
Email: amr.motawi@pharma.cu.edu.eg

ORCID: 0000-0002-7111-8837

1- Chemistry Experimental Section

1.1 Chemistry procedures

Starting materials and solvents were acquired from commercial suppliers and were used without extra purification. Melting points were obtained on a Griffin apparatus and were uncorrected. Microanalyses for C, H, and N were carried out at the Regional Center for Mycology and Biotechnology, Faculty of Pharmacy, Al-Azhar University. IR spectra were recorded on Shimadzu IR 435 spectrophotometer (Shimadzu Corp., Kyoto, Japan) Faculty of Pharmacy, Cairo University, Cairo, Egypt and values were represented in cm⁻¹. ¹H NMR spectra were carried out on Bruker 400 MHz (Bruker Corp., Billerica, MA, USA) spectrophotometer, Faculty of Pharmacy, Cairo University, Cairo, Egypt. The chemical shifts were recorded in ppm on δ scale, coupling constants (*J*) were given in Hz and peak multiplicities are designed as follows: s, singlet; d, doublet; dd, doublet of doublet; t, triplet; m, multiplet. ¹³C NMR spectra were carried out on Bruker 100 MHz spectrophotometer, Faculty of Pharmacy, Cairo University, Cairo, Egypt. Progress of the reactions were monitored by TLC using precoated aluminum sheet silica gel MERCK 60F 254 and was visualized by UV lamp.

1.2 2-Ethoxy-4-((2-(4-phenylthiazol-2-yl)hydrazineylidene)methyl)phenol (3a)

Yellowish green solid: 75% yield; mp 182–184°C; IR (KBr, cm⁻¹) 3313 (OH), 3336 (NH), 3062 (CH aromatic), 2927, 2881 (CH aliphatic), 1620 (C=N), 1581 (C=C); ¹H NMR (400 MHz, DMSO- d_6) δ 11.81 (s, 1H, NH, D₂O exchangeable), 8.02 (s, 1H, CH=N), 7.85–7.83 (m, 1H, ArH), 7.45–7.38 (m, 2H, ArH), 7.34 (d, *J* = 7.2 Hz, 2H, ArH), 7.31 (s, 1H, ArH thiazole), 7.25 (d, *J* = 1.6 Hz, 1H, ArH), 7.10 (dd, *J* = 8.4, 1.6 Hz, 1H, ArH), 6.87–6.82 (m, 1H, ArH), 5.73 (s, 1H, OH, D₂O exchangeable), 4.07 (q, *J* = 6.8 Hz, 2H, <u>CH₂CH₃), 1.36 (t, *J* = 6.8 Hz, 3H, CH₂<u>CH₃</u>); ¹³C NMR (100 MHz, DMSO- d_6) δ 166.5, 153.7, 147.7, 147.6, 135.6, 132.3, 129.9, 129.8, 129.1, 126.3, 121.6, 115.9, 112.4, 110.3, 64.3, 15.0. Anal. Calcd for C₁₈H₁₇N₃O₂S (339.41): C, 63.70; H, 5.05; N, 12.38, found C, 63.91; H, 5.22; N, 12.59.</u>

1.3 2-Ethoxy-4-((2-(4-(3-nitrophenyl)thiazol-2-yl)hydrazineylidene)methyl)phenol (3b)

Orange solid: 71% yield; mp 190–192°C; IR (KBr, cm⁻¹) 3479 (OH), 3336 (NH), 3062 (CH aromatic), 2927, 2881 (CH aliphatic), 1616 (C=N), 1585 (C=C); ¹H NMR (400 MHz, DMSO- d_6) δ 12.10 (s, 1H, NH, D₂O exchangeable), 8.66 (s, 1H, ArH), 8.29 (d, J = 8.0 Hz, 1H, ArH), 8.14 (dd, J = 8.0, 1.6 Hz, 1H, ArH), 7.95 (s, 1H, CH=N), 7.72–7.66 (m, 2H, ArH + OH, D₂O exchangeable), 7.61 (s, 1H, ArH thiazole), 7.23 (d, J = 1.6 Hz, 1H, ArH), 7.07 (dd, J = 8.2, 1.6 Hz, 1H, ArH), 6.85 (d, J = 8.0 Hz, 1H, ArH), 4.07 (q, J = 6.8 Hz, 2H, <u>CH₂CH₃</u>); ¹³C NMR (100 MHz, DMSO- d_6) δ 164.6, 153.7, 148.2, 148.1, 147.6, 147.1, 136.1, 131.4, 129.3, 129.1, 124.5, 122.3, 121.7, 115.9, 115.7, 113.0, 64.3, 15.0. Anal. Calcd for C₁₈H₁₆N₄O₄S (384.41): C, 56.24; H, 4.20; N, 14.58, found C, 56.41; H, 4.39; N, 14.81.

1.4 2-(2-(4-Chloro-3-nitrobenzylidene)hydrazineyl)-4-phenylthiazole (3c)

Yellow solid: 71% yield; mp 238–240°C; IR (KBr, cm⁻¹) 3367 (NH), 3059 (CH aromatic), 2970, 2873 (CH aliphatic), 1627 (C=N), 1608 (C=C); ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.55 (s, 1H, NH, D₂O exchangeable), 8.30 (d, *J* = 2.0 Hz, 1H, ArH), 8.10 (s, 1H, CH=N), 7.98 (dd, *J* = 8.8, 2.0 Hz, 1H, ArH), 7.88–7.86 (m, 2H, ArH), 7.83 (d, *J* = 8.4 Hz, 1H, ArH), 7.43 (d, *J* = 7.2 Hz, 2H, ArH), 7.40 (s, 1H, ArH thiazole), 7.32 (t, *J* = 7.2 Hz, 1H, ArH); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.2, 150.9, 148.4, 138.3, 135.6, 134.8, 132.6, 130.9, 129.1, 128.8, 128.3, 126.0, 123.2, 104.8. Anal. Calcd for C₁₆H₁₁ClN₄O₂S (358.80): C, 53.56; H, 3.09; N, 15.62, found C, 53.80; H, 3.27; N, 15.89.

1.5 2-(2-(4-Chloro-3-nitrobenzylidene)hydrazineyl)-4-(3-nitrophenyl)thiazole (3d)

Yellow solid: 76% yield; mp 236–238°C; IR (KBr, cm⁻¹) 3410 (NH), 3086 (CH aromatic), 2920, 2866 (CH aliphatic), 1624 (C=N), 1570 (C=C); ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.65 (s, 1H, NH, D₂O exchangeable), 8.68 (t, *J* = 2.0, 1H, ArH), 8.31–8.30 (m, 2H, ArH), 8.16 (dd, *J* = 8.0, 1.6 Hz, 1H, ArH), 8.10 (s, 1H, CH=N), 7.98 (dd, *J* = 8.4, 2.0 Hz, 1H, ArH), 7.83 (d, *J* = 8.4 Hz, 1H, ArH), 7.73 (s, 1H, ArH thiazole), 7.72 (t, *J* = 8.4 Hz, 1H, ArH); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.6, 148.7, 148.6, 148.3, 138.5, 136.4, 135.4, 132.6, 132.0, 131.0, 130.7, 125.2, 123.2, 122.5, 120.4, 107.5. Anal. Calcd for C₁₆H₁₀ClN₅O₄S (403.80): C, 47.59; H, 2.50; N, 17.34, found C, 47.82; H, 2.67; N, 17.52.

1.6 2-(2-(4-Chloro-3-nitrobenzylidene)hydrazineyl)-4-(4-chlorophenyl)thiazole (3e)

Yellow solid: 78% yield; mp 232–234°C; IR (KBr, cm⁻¹) 3313 (NH), 3039 (CH aromatic), 2873, 2804 (CH aliphatic), 1631 (C=N), 1608 (C=C); ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.57 (s, 1H, NH, D₂O exchangeable), 8.31 (dd, *J* = 7.4, 1.6 Hz, 1H, ArH), 8.10 (s, 1H, CH=N), 7.97 (dd, *J* = 8.4, 1.6 Hz, 1H, ArH), 7.89 (t, *J* = 7.4 Hz, 2H, ArH), 7.82 (d, *J* = 8.4 Hz, 1H, ArH), 7.56–7.46 (m, 3H, ArH + ArH thiazole); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 167.2, 148.4, 147.0, 139.4, 135.2, 133.3, 132.6, 131.1, 130.9, 130.0, 128.9, 127.7, 123.3, 105.6. Anal. Calcd for C₁₆H₁₀Cl₂N₄O₂S (393.24): C, 48.87; H, 2.56; N, 14.25, found C, 49.05; H, 2.71; N, 14.53.

1.7 1,5-Dimethyl-4-((2-(4-(3-nitrophenyl)thiazol-2-yl)hydrazineylidene)methyl)-2-phenyl-1,2-dihydro-3*H*-pyrazol-3-one (3f)

Yellowish green solid: 71% yield; mp 238–240°C; IR (KBr, cm⁻¹) 3410 (NH), 3109 (CH aromatic), 2924, 2850 (CH aliphatic), 1647 (C=O), 1608 (C=N), 1580 (C=C); ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.93 (s, 1H, NH, D₂O exchangeable), 8.67 (s, 1H, ArH), 8.30 (d, *J* = 8.0 Hz, 1H, ArH), 8.15 (dd, *J* = 8.0, 1.6 Hz, 1H, ArH), 7.88 (s, 1H, CH=N), 7.71 (t, *J* = 8.0 Hz, 1H, ArH), 7.60 (s, 1H, ArH thiazole), 7.54 (t, *J* = 7.6 Hz, 2H, ArH), 7.40 (t, *J* = 7.6 Hz, 1H, ArH), 7.37–7.35 (m, 2H, ArH), 3.26 (s, 3H, NCH₃), 2.62 (s, 3H, CH₃); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 169.2, 164.0, 152.5, 148.7, 148.6, 136.8, 136.4, 134.9, 132.0, 130.6, 129.7, 127.8, 125.7, 122.4, 120.3, 106.1, 101.3, 34.9, 12.7. Anal. Calcd for C₂₁H₁₈N₆O₃S (434.47): C, 58.05; H, 4.18; N, 19.34, found C, 58.31; H, 4.32; N, 19.62.

1.8 4-((2-(4-(A-Bromophenyl)thiazol-2-yl)hydrazineylidene)methyl)-1,5-dimethyl-2-phenyl-1,2-dihydro-3*H*-pyrazol-3-one (3g)

Buff solid: 80% yield; mp 234–236°C; IR (KBr, cm⁻¹) 3221 (NH), 3051 (CH aromatic), 2939, 2850 (CH aliphatic), 1647 (C=O), 1610 (C=N), 1562 (C=C); ¹H NMR (400 MHz, DMSO- d_6) δ 11.82 (s, 1H, NH, D₂O exchangeable), 7.88 (s, 1H, CH=N), 7.80 (d, J = 8.4 Hz, 2H, ArH), 7.59 (d, J = 8.4 Hz, 2H, ArH), 7.53 (t, J = 7.6

Hz, 2H, ArH), 7.46–7.40 (m,1H, ArH), 7.36–7.30 (m, 3H, ArH + ArH thiazole), 3.24 (s, 3H, NCH₃), 2.61 (s, 3H, CH₃); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 169.3, 161.8, 152.5, 152.0, 149.7, 131.9, 130.0, 129.7, 128.1, 128.0, 127.9, 125.7, 120.8, 104.2, 101.3, 34.5, 10.7. Anal. Calcd for C₂₁H₁₈BrN₅OS (468.37): C, 53.85; H, 3.87; N, 14.95, found C, 54.09; H, 4.03; N, 15.17.

1.9 2-(2-(4-(Benzyloxy)benzylidene)hydrazineyl)-4-phenylthiazole (3h)

Buff solid: 78% yield; mp 212–214°C; IR (KBr, cm⁻¹) 3224 (NH), 3039 (CH aromatic), 2924, 2873 (CH aliphatic), 1612 (C=N), 1562 (C=C); ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.12 (s, 1H, NH, D₂O exchangeable), 8.02 (s, 1H, CH=N), 7.85 (d, *J* = 7.2 Hz, 2H, ArH), 7.62 (d, *J* = 8.8 Hz, 2H, ArH), 7.47 (d, *J* = 7.2 Hz, 2H, ArH), 7.44–7.39 (m, 4H, ArH), 7.36–7.29 (m, 3H, ArH + ArH thiazole), 7.09 (d, *J* = 8.8 Hz, 2H, ArH), 5.16 (s, 2H, OCH₂); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.4, 162.7, 160.0, 137.2, 131.9, 130.9, 129.8, 129.5, 128.9, 128.5, 128.3, 128.2, 126.3, 116.0, 115.7, 69.8. Anal. Calcd for C₂₃H₁₉N₃OS (385.49): C, 71.66; H, 4.97; N, 10.90, found C, 71.92; H, 4.84; N, 11.16.

1.10 2-(2-(4-(Benzyloxy)benzylidene)hydrazineyl)-4-(3-nitrophenyl)thiazole (3i)

Brown solid: 75% yield; mp 210–212°C; IR (KBr, cm⁻¹) 3224 (NH), 3059 (CH aromatic), 2931, 2873 (CH aliphatic), 1620 (C=N), 1597 (C=C);¹H NMR (400 MHz, DMSO- d_6) δ 12.27 (s, 1H, NH, D₂O exchangeable), 8.66 (s, 1H, ArH), 8.28 (d, J = 8.0 Hz, 1H, ArH), 8.13 (dd, J = 8.0, 1.6 Hz, 1H, ArH), 8.01 (s, 1H, CH=N), 7.69 (t, J = 8.0 Hz, 1H, ArH), 7.61–7.59 (m, 2H, ArH + ArH thiazole), 7.45 (d, J = 7.2 Hz, 2H, ArH), 7.39 (t, J = 7.2 Hz, 2H, ArH), 7.33 (d, J = 7.2 Hz, 1H, ArH), 7.08–7.05 (m, 3H, ArH), 5.13 (s, 2H, OCH₂); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.7, 164.6, 157.4, 148.4, 140.0, 136.2, 134.0, 132.3, 131.4, 129.3, 128.9, 128.5, 128.3, 128.2, 124.5, 122.8, 115.7, 93.2, 70.1. Anal. Calcd for C₂₃H₁₈N₄O₃S (430.48): C, 64.17; H, 4.21; N, 13.02, found C, 64.40; H, 4.35; N, 13.29.

1.11 2-(2-(4-(Benzyloxy)-3-methoxybenzylidene)hydrazineyl)-4-phenylthiazole (3j)

Yellowish green solid: 71% yield; mp 206–208°C; IR (KBr, cm⁻¹) 3224 (NH), 3059 (CH aromatic), 2935, 2870 (CH aliphatic), 1612 (C=N), 1570 (C=C); ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.00 (s, 1H, NH, D₂O exchangeable), 8.04 (s, 1H, CH=N), 7.85 (d, *J* = 7.2 Hz, 2H, ArH), 7.46 (d, *J* = 7.2 Hz, 3H, ArH), 7.41 (d, *J* = 8.0 Hz, 3H, ArH), 7.36–7.31 (m, 4H, ArH + ArH thiazole), 7.18 (dd, *J* = 8.4, 1.6 Hz, 1H, ArH), 7.12–7.09 (m, 1H, ArH), 5.13 (s, 2H, OCH₂), 3.83 (s, 3H, OCH₃); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.5, 157.4, 149.8, 149.3, 135.6, 132.3, 129.9, 129.8, 129.5, 128.9, 128.4, 128.3, 128.1, 126.3, 121.2, 113.1, 110.2, 109.1, 70.3, 56.0. Anal. Calcd for C₂₄H₂₁N₃O₂S (415.51): C, 69.38; H, 5.09; N, 10.11, found C, 69.09; H, 5.21; N, 10.34.

1.12 2-(2-(4-(Benzyloxy)-3-methoxybenzylidene)hydrazineyl)-4-(3-nitrophenyl)thiazole (3k)

Brown solid: 68% yield; mp 200–202°C; IR (KBr, cm⁻¹) 3236 (NH), 3062 (CH aromatic), 2916, 2866 (CH aliphatic), 1635 (C=N), 1590 (C=C) ;¹H NMR (400 MHz, DMSO- d_6) δ 12.20 (s, 1H, NH, D₂O exchangeable), 8.68 (t, J = 2.0 Hz, 1H, ArH), 8.30 (d, J = 8.0 Hz, 1H, ArH), 8.16-8.13 (m, 1H, ArH), 7.99 (s, 1H, CH=N), 7.71 (t, J = 8.0 Hz, 1H, ArH), 7.64 (s, 1H, ArH thiazole), 7.46 (d, J = 6.8 Hz, 2H, ArH), 7.42–7.39 (m, 2H, ArH), 7.37–7.34 (m, 1H, ArH), 7.31 (d, J = 1.6 Hz, 1H, ArH), 7.17 (dd, J = 8.4, 1.6 Hz, 1H, ArH), 7.10 (d, J = 8.4 Hz, 1H, ArH), 5.13 (s, 2H, OCH₂), 3.84 (s, 3H, OCH₃); ¹³C NMR (100 MHz, DMSO- d_6) δ 169.1, 149.8, 149.6, 148.7, 148.4,

142.3, 137.3, 134.0, 132.0, 130.7, 130.5, 128.9, 128.3, 127.5, 123.2, 122.6, 120.4, 113.8, 109.2, 106.6, 70.4, 55.9. Anal. Calcd for C₂₄H₂₀N₄O₄S (460.51): C, 62.60; H, 4.38; N, 12.17, found C, 62.43; H, 4.51; N, 12.43.

1.13 2-(2-(4-(Benzyloxy)-3-methoxybenzylidene)hydrazineyl)-4-(4-chlorophenyl)thiazole (3l)

Buff solid: 74% yield; mp 210–212°C; IR (KBr, cm⁻¹) 3421 (NH), 3082 (CH aromatic), 2920, 2862 (CH aliphatic), 1616 (C=N), 1573 (C=C);¹H NMR (400 MHz, DMSO-*d*₆) δ 12.07 (s, 1H, NH, D₂O exchangeable), 7.99 (s, 1H, CH=N), 7.87 (d, *J* = 8.8 Hz, 2H, ArH), 7.48–7.46 (m, 4H, ArH), 7.41 (t, *J* = 7.2 Hz, 2H, ArH), 7.38 (s, 1H, ArH thiazole), 7.36–7.30 (m, 2H, ArH), 7.17 (dd, *J* = 8.4, 1.6 Hz, 1H, ArH), 7.10 (d, *J* = 8.4 Hz, 1H, ArH), 5.13 (s, 2H, OCH₂), 3.83 (s, 3H, OCH₃); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.0, 149.8, 143.2, 137.2, 137.1, 131.8, 130.4, 130.0, 129.9, 128.9, 128.9, 128.6, 128.4, 128.3, 120.7, 113.8, 113.3, 109.1, 70.3, 56.0. Anal. Calcd for C₂₄H₂₀ClN₃O₂S (449.95): C, 64.07; H, 4.48; N, 9.34, found C, 63.98; H, 4.59; N, 9.52.

1.14 2-(2-(4-(Benzyloxy)-3-ethoxybenzylidene)hydrazineyl)-4-phenylthiazole (3m)

Buff solid: 77% yield; mp 190–192°C; IR (KBr, cm⁻¹) 3402 (NH), 3059 (CH aromatic), 2927, 2873 (CH aliphatic), 1624 (C=N), 1573 (C=C);¹H NMR (400 MHz, DMSO- d_6) δ 12.09 (s, 1H, NH, D₂O exchangeable), 7.97 (s, 1H, CH=N), 7.86 (d, J = 7.2 Hz, 2H, ArH), 7.47 (d, J = 7.2 Hz, 2H, ArH), 7.43–7.39 (m, 4H, ArH), 7.36–7.29 (m, 4H, ArH + ArH thiazole), 7.15 (dd, J = 8.0, 1.6 Hz, 1H, ArH), 7.09 (d, J = 8.4 Hz, 1H, ArH), 5.16 (s, 2H, OCH₂), 4.10 (q, J = 6.8 Hz, 2H, O<u>CH₂</u>CH₃), 1.37 (t, J = 6.8 Hz, 3H, OCH₂<u>CH₃</u>); ¹³C NMR (100 MHz, DMSO- d_6) δ 168.8, 149.9, 149.8, 149.1, 142.7, 137.4, 134.5, 129.1, 128.9, 128.8, 128.6, 128.3, 128.1, 126.1, 120.7, 114.4, 110.7, 104.0, 70.4, 64.4, 15.2. Anal. Calcd for C₂₅H₂₃N₃O₂S (429.54): C, 69.91; H, 5.40; N, 9.78, found C, 70.06; H, 5.63; N, 10.02.

1.15 2-(2-(4-(Benzyloxy)-3-ethoxybenzylidene)hydrazineyl)-4-(3-nitrophenyl)thiazole (3n)

Buff solid: 79% yield; mp 206–208°C; IR (KBr, cm⁻¹) 3267 (NH), 3051 (CH aromatic), 2978, 2873 (CH aliphatic), 1624 (C=N), 1577 (C=C). ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.17 (s, 1H, NH, D₂O exchangeable), 8.67 (t, *J* = 2.0 Hz, 1H, ArH), 8.30 (d, *J* = 8.0 Hz, 1H, ArH), 8.15 (dd, *J* = 8.0, 1.6 Hz, 1H, ArH), 7.97 (s, 1H, CH=N), 7.71 (t, *J* = 8.0 Hz, 1H, ArH), 7.64 (s, 1H, ArH thiazole), 7.46 (d, *J* = 7.2 Hz, 2H, ArH), 7.40 (t, *J* = 7.2 Hz, 2H, ArH), 7.35–7.30 (m, 2H, ArH), 7.17 (dd, *J* = 8.4, 1.6 Hz, 1H, ArH), 7.09 (d, *J* = 8.4 Hz, 1H, ArH), 5.15 (s, 2H, OCH₂), 4.10 (q, *J* = 7.2 Hz, 2H, O<u>CH₂CH₃</u>), 1.37 (t, *J* = 7.2 Hz, 3H, OCH₂<u>CH₃</u>); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 167.7, 150.0, 149.1, 148.7, 148.1, 143.3, 137.4, 133.9, 132.0, 130.6, 130.5, 128.9, 128.3, 128.1, 123.1, 122.6, 120.9, 114.2, 110.5, 106.6, 70.4, 64.4, 15.2. Anal. Calcd for C₂₅H₂₂N₄O₄S (474.54): C, 63.28; H, 4.67; N, 11.81, found C, 63.45; H, 4.72; N, 12.07.

1.16 2-(2-(4-(Benzyloxy)-3-ethoxybenzylidene)hydrazineyl)-4-(4-chlorophenyl)thiazole (30)

Buff solid: 72% yield; mp 210–212°C; IR (KBr, cm⁻¹) 3290 (NH), 3032 (CH aromatic), 2927, 2873 (CH aliphatic), 1624 (C=N), 1573 (C=C); ¹H NMR (400 MHz, DMSO- d_6) δ 12.05 (s, 1H, NH, D₂O exchangeable), 7.96 (s, 1H, CH=N), 7.87 (d, J = 8.8 Hz, 2H, ArH), 7.48–7.46 (m, 4H, ArH + ArH thiazole), 7.40 (t, J = 7.2 Hz, 2H, ArH), 7.37 (s, 1H, ArH), 7.35–7.34 (m, 1H, ArH), 7.29 (d, J = 1.6 Hz, 1H, ArH), 7.15 (dd, J = 8.4, 1.6 Hz, 1H, ArH), 7.09 (d, J = 8.4 Hz, 1H, ArH), 5.15 (s, 2H, OCH₂), 4.10 (q, J = 6.8 Hz, 2H, O<u>CH₂</u>CH₃), 1.37 (t, J = 6.8 Hz, 3H, OCH₂<u>CH₃</u>). ¹³C NMR (100 MHz, DMSO- d_6) δ 168.9, 150.0, 149.9, 149.1, 143.2, 137.4, 131.9, 130.4, 130.0,

129.1, 128.9, 128.3, 128.1, 127.7, 121.0, 114.3, 110.7, 104.8, 70.4, 64.4, 15.2. Anal. Calcd for C₂₅H₂₂ClN₃O₂S (463.98): C, 64.72; H, 4.78; N, 9.06, found C, 64.59; H, 4.87; N, 9.29.

1.17 2-(2-(4-(Benzyloxy)-3-ethoxybenzylidene)hydrazineyl)-4-(4-bromophenyl)thiazole (3p)

Buff solid: 69% yield; mp 200–202°C; IR (KBr, cm⁻¹) 3394 (NH), 3062 (CH aromatic), 2987, 2873 (CH aliphatic), 1606 (C=N), 1570 (C=C); ¹H NMR (400 MHz, DMSO- d_6) δ 12.03 (s, 1H, NH, D₂O exchangeable), 7.96 (s, 1H, CH=N), 7.81 (d, J = 8.4 Hz, 2H, ArH), 7.60 (d, J = 8.4 Hz, 2H, ArH), 7.46 (d, J = 6.8 Hz, 2H, ArH), 7.42–7.41 (m, 2H, ArH), 7.39 (s, 1H, ArH thiazole), 7.35 (d, J = 6.8 Hz, 1H, ArH), 7.29 (d, J = 1.6 Hz, 1H, ArH), 7.15 (dd, J = 8.4, 1.6 Hz, 1H, ArH), 7.09 (d, J = 8.4 Hz, 1H, ArH), 5.15 (s, 2H, OCH₂), 4.10 (q, J = 6.8 Hz, 2H, OCH₂CH₃), 1.37 (t, J = 6.8 Hz, 3H, OCH₂CH₃); ¹³C NMR (100 MHz, DMSO- d_6) δ 168.9, 149.9, 149.8, 149.1, 143.2, 137.4, 132.0, 131.8, 130.7, 130.3, 128.9, 128.3, 128.1, 121.1, 120.7, 114.4, 110.7, 104.8, 70.4, 64.4, 15.2. Anal. Calcd for C₂₅H₂₂BrN₃O₂S (508.43): C, 59.06; H, 4.36; N, 8.26, found C, 59.28; H, 4.50; N, 8.49.

2- Biological evaluation

2.1 Measurement of anticancer activity against a panel of 60 cell lines.

Anticancer activity screening of the newly synthesized compounds was measured *in vitro* utilizing 60 different human cancer cell lines provided by US NCI according to previously reported standard procedure as follows:

- Cells were seeded into 96-well microtiter plates in a density of 5,000-1,000 cells per 100 µL/well. Cells were then incubated at 37°C, 5% CO₂, 95% air, and 100% relative humidity for 24 h before the addition of experimental compounds. After 24 h, two plates of each cell line were fixed in situ with trichloroacetic acid (TCA), to present a measurement of the cell population for each cell line at the time of compound exposure (Tz).
- Experimental compounds were solubilized in DMSO at 400-fold, the desired final maximum test concentration, and stored frozen before use. At the time of compound addition, an aliquot of frozen concentrate was thawed and diluted to twice the desired final maximum test concentration with a complete medium containing 50 µg/mL gentamicin.
- Additional four, 10-fold or $\frac{1}{2}$ log serial dilutions were made to provide a total of five compound concentrations plus control. Aliquots of 100 μ L of these different compound dilutions were added to the appropriate microtiter wells containing 100 μ L of the medium, resulting in the required final compound concentrations.
- Following compound addition, the plates were incubated for an additional 48 hr at 37°C, 5% CO₂, 95% air, and 100% relative humidity. For adherent cells, the assay is terminated by the addition of cold TCA. Cells were fixed in situ by the gentle addition of 50 μL of cold 50% (w/v) TCA (final concentration, 10% TCA and incubated for 60 min. at 4°C. The supernatant was discarded, and the plates were washed five times with tap water and air-dried.
- Sulforhodamine B (SRB) solution (100 μL) at 0.4% (w/v) in 1% acetic acid was added to each well and plates were incubated for 10 min. at room temperature. After staining, the unbound dye was removed by washing

five times with 1% acetic acid and the plates were air-dried. The bound stain was subsequently solubilized with 10 mM Trizma base, and the absorbance was obtained using an automated plate reader at a wavelength of 515 nm. For suspension cells, we used the same methodology except that the assay was terminated by fixing settled cells at the bottom of the wells by gently adding 50 μ L of 80% TCA (final concentration, 16% TCA). Using the seven absorbance measurements [time zero (Tz), control growth (C), and test growth in the presence of a compound at the five concentration levels (Ti)], the percentage growth was calculated at each of the compound concentration levels. Percentage growth inhibition is calculated as follows:

 $[(Ti - Tz)/(C - Tz)] \times 100 \text{ for concentrations for which } Ti \ge Tz,$ [(Ti - Tz)/Tz] × 100 for concentrations for which Ti > Tz

For each experimental agent. Growth inhibition of 50% (GI₅₀) is calculated from $[(Ti - Tz)/(C - Tz)] \times 100 = 50$, which is the compound concentration resulting in a 50% reduction in the net protein increase (as measured by SRB staining) in control cells during the compound incubation; however, if the effect is not reached or is exceeded, the value for that parameter is expressed as greater or less than the maximum or minimum concentration tested.

2.2 MTT assay and selectivity index (SI) calculation

The 3–(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method of monitoring *in vitro* cytotoxicity is well suited for use with multiwell plates. The assessment of cell population growth is based on the capability of living cells to reduce the yellow product MTT to a blue product, formazan, by a reduction reaction occurring in the mitochondria. The cell lines were ncubated for 24 h in 96-microwell plates. The number of living cells in the presence or absence (control) of the various test compounds is directly proportional to the intensity of the blue color, measured by spectrophotometry using (ROBONIK P2000 Spectrophotometer) at a wavelength of 570 nm. Measure the background absorbance of multiwell plates at 690 nm and subtract from the 570 nm measurement. Five concentrations ranging from 0.01 μ M to 100 μ M (with a semi-log decrease in concentration) were tested for each of the compounds under study. Each experiment was carried out in triplicate. The IC₅₀ values [the concentration required for 50% inhibition of cell viability] were calculated using sigmoidal dose-response curve-fitting models. The selectivity index (SI) was calculated as the ratio of cytotoxicity (IC₅₀) of normal lymphocytes (PCS-800-017) to the leukemia cell line HL-60(TB).

Compounds Cell lines 3i 3a 3b 3c 3d 3e 3f 3g 3h 3j 3k 31 3m 3n 30 3p **3**a Leukemia 27.64 37.55 **CCRF-CEM** 59.40 94.91 25.72 65.66 81.86 20.43 28.01 53.56 31.73 --------------->100 27.22 54.83 26.31 41.43 45.56 22.85 HL-60(TB) 73.44 >100 >100 52.13 16.13 49.69 51.49 36.03 21.66 --59.13 K-562 45.39 92.26 26.86 77.08 86.14 32.21 41.9 58.43 47.14 65.07 34.26 37.47 48.21 67.36 17.23 ---86.93 33.59 60.49 24.42 28.39 MOLT-4 55.45 >100 37.97 58.44 22.16 ---49.58 43.52 51.06 20.61 ----21.79 21.4 35.97 65.91 58.87 59.65 **RPMI-8226** 53.40 98.10 85.1 78.44 >100 55.91 61.14 22.19 34.37 -----98.89 SR 31.27 22.96 53.84 81.15 35.61 40.82 55.36 33.08 29.37 43.93 25.36 ---60.14 --------Non-small cell lung cancer A549/ATCC 91.8 25.63 18.49 38.48 23.60 21.93 87.43 76.42 --------------------------EKVX 78.52 21.23 97.75 22.91 15.39 19.30 34.62 25.80 32.59 18.56 28.34 53.04 31.44 21.07 36.28 37.02 29.67 30.45 **HOP-62** >100 17.54 60.28 -----------------------------**HOP-92** 23.92 >100 >100 21.68 35.81 24.16 11.71 31.88 20.97 29.45 -------------------NCI-H226 83.99 89.96 18.97 32.30 15.31 31.25 22 NT 75.71 19.19 32.12 18.90 ----------47.28 15.88 44.9 80.17 20.85 19.69 32.55 23.84 23.55 26.07 54.58 NCI-H23 39.24 >100 32.67 ------22.81 15.02 16.75 NCI-H322M 34.1 76.97 83.11 50.49 >100 16.24 24.29 23.68 15.28 19.83 --------78.6 **NCI-H460** 27.32 >100 22.22 38.05 21.03 26.09 43.32 24.08 88.78 22.75 ------------60.18 17.37 **NCI-H522** 88.98 >100 17.49 46.33 82.28 33.91 27.60 18.26 25.37 33.62 39.74 20.63 31.86 31.86 --**Colon Cancer COLO 205** 64.66 25.07 34.87 ---------------------------------25.55 18.01 HCC-2998 >100 >100 88.2 >100 >10021.116.18 16.45 ----------------47.76 70.93 **HCT-116** 20.87 42.7 39.24 87.5 34.14 >100 ----16.68 ----19.96 15.42 26.36 --32.35 **HCT-15** 41.66 92.55 56.61 86.41 50.17 52.32 46.47 34.27 19.16 45.63 61 65.84 15.17 --------HT29 73.91 82.35 31.22 42.62 64.28 16.93 17.78 16.72 68.17 ------------------**KM12** 42.89 >100 86.6 96.1 >10017.75 28.88 18.03 30.65 18.21 15.47 20.79 26.6 30.01 ------SW-620 76.13 99.57 ---22.12 -----76.18 ------------------------**CNS** Cancer SF-268 29.11 96.73 34.71 42.42 27.12 ----------------------------SF-295 18.92 21.39 >100 16.9 15.31 50.73 20.59 --37.8 47.97 30.68 --------------

Table S1. Percentages of growth inhibition obtained from tests of compounds 3a-q against a panel of tumor cell lines at asingle concentration of (10 µM).

SF-539	58.81	>100				35.93			31.12		48.57	22.86		26.63	61.61	37.69	57.12
SNB-19	28.77	96.14	19.27	30.98	80.07						25.66	34.46		16.81	23.61		21.94
SNB-75	53.81	>100			39.93	24.94						29.18	25.77	34.84	51.3	40.93	21.73
U251	21.78	>100		58.23	49.15				17.78		22.24			28.24	45.29	58.5	20.33
Melanoma																	
LOX IMVI	85.46	>100		>100	90.84	16.36		15.53		17.25	16.19		17.00	16.03	35.4	37.64	32.16
MALME-3M		>100		33.15	50.91	29.42			22.17	27.59	19.58	29.06			32.73	34.00	22.26
M14	43.1	>100		46.25	31.31						21.40		30.41	23.95	45.97	33.88	18.79
MDA-MB-435	28.79	>100							15.55					22.41	43.55	43.55	
SK-MEL-2		>100															
SK-MEL-28	28.01	98.65		37.64	74.32						19.76			20.44		17.45	
SK-MEL-5	53.67	>100		35.44	59.62	22.91	26.63		41.23	34.24	28.75	20.56	15.47	26.9	19.64	17.53	18.62
UACC-257	18.45	>100		16.26	49.16	18.39	17.94							18.91			
UACC-62	46.06	>100				16.79	22.46	46.13	24.99	37.25	26.41	28.76	33.07	28.76	24.88	25.09	17.56
Ovarian cancer																	-
IGROV1	59.43	>100		18.63	67.11					35.38			36.22		33.04	20.85	
OVCAR-3	40.3	>100	96.18	>100	>100					23.4			23.61				
OVCAR-4	45.81	>100			26.41	44.46	22.78	17.98	38.2	38.18	33.62	30.19	23.54	38.01	58.49	36.39	22.68
OVCAR-5		83.55													15.11		
OVCAR-8	22.41	97.1			16.97						18.61	18.57			49.16	42.39	35.08
NCI/ADR-RES	24.09	>100	NT	NT	NT	25.77		NT	NT	NT	NT	NT	16.65	23.42	58.7	51.54	40.49
SK-OV-3		80.72															40.84
Renal Cancer										•							
786-0	19.88	>100				30.32			19.33		56.5			49.32	53.87	28.09	
A498							16.71							NT	21.33		
ACHN	35.01	99.95				31.59		79.82	20.22	29.58	24.81	31.04	17.87	19.97	39.1	21.34	18.09
CAKI-1	49.83	>100			39.94	27.17		45.57	20.11	29.18	34.96	26.63	24.09	28.8	24.04	18.26	18.6
RXF 393	22.21	>100			68.9				25.86		68.51			79.23	29.52	25.01	22.03
SN12C	30.88	>100		23.06	48.25				24.76	24.37	26.83		16.04	17.13	28.47	25.27	19.48
ТК-10		>100									15.38						
UO-31	66.01	98.32		36.67	32.14	25.48	22.09	40.39	33. 18	54.03	31.49	26.78	48.12	33.55	44.94	29.21	15.44
Prostate Cancer	r																
PC-3	54.86	93.38	40.1	33.67	>100			37.45	32.14	41.05	37.82	30.81	31.71	32.58	29.67	40.37	

			I	1					I		1	r		1			
DU-145		>100	63.72	38.17	99.19			19.73	25.99		25.89				63.74	34	16.45
Breast Cancer																	
MCF7	75.82	>100	89.86	97.95	>100	22.9		34.93	47.38	41.77	35.94	45.02	26.34	38.92	42.99	31.98	36.18
MDA- MB- 231/ATC	45.34	>100		22.45	74.93	38.76		17.41		31.89	39.05	33.93	32.06	18.51	31.73	30.68	29.54
C																	
HS 578T	34.02	65.19	27.01	75.99	>100	43.39					36.38	27.78	18.74	25.02	35.79	34.63	40.54
BT-549	67.47	>100		52.5		20.69	21.68				NT		19.19	15.5	32.31		28.38
T-47D	58.45	>100	>100	91.54	>100	36.84	34.85	37.92	33.45	45.22	63.92	27.62	47.96	48.12	40.4	24.51	23.36
MDA-MB-468	89.79	>100	>100	>100	>100	51.18	40.98		26.36	19.26	38.87		21.79	38.36	41.91	32.51	33.94
Mean inhibition	36.86	111.5 6	21.54	36.04	65.96	16.24	9.82	13.09	18.51	19.06	28.81	16.48	14.46	23.85	37.06	31.83	18.2

-- Inhibition of growth by the compound is less than 15%.
* The bold figures indicate Strong (GI% > 70%)

2.3 In vitro PI3K inhibitory assay

The inhibitory rate against PI3K of compounds **3b** and **3e** were assayed *in-vitro* using the PI3K α (p110 α /p85 α) Assay Kit Catalog #79781, BPS Bioscience, Inc, San Diego, CA, USA according to the manufacturer's instructions. Mix 750 µL Kinase assay buffer and 750 µL distilled water (1:1) to prepare 2.5x Kinase assay buffer. Mix 25 µL of 500 µM ATP (provided) and 975 µL distilled water to prepare 12.5 µM ATP solution. Calculate the amount of PI3K α required for the assay and dilute enzyme to ~ 0.5 ng/µL with 2.5x Kinase assay buffer prepared in step 2. Store remaining undiluted enzyme in aliquots at -80°C. add 5 µL PI3K lipid substrate first, 5 µL inhibitor second, 5 µL 12.5 µM ATP third and 10 µL of diluted PI3K α). Add 5 µL PI3K lipid substrate to all wells. Add 5 µL of 5x Inhibitor solution of each well labeled as "Test Inhibitor." For the "Positive Control" and "Blank," add 5 µL of the same solution without inhibitor Add 5 µL diluted ATP to all wells. To the wells designated as "Blank," add 10 µL of 2.5x Kinase assay buffer. Initiate reaction by adding 10 µL of diluted PI3K α enzyme to the wells designated "Positive Control" and "Test Inhibitor." Carefully shake the plate well and incubate it at 30°C for 40 min. After the 40 minutes reaction, add 25 µL of ADP-Glo reagent to each well. Cover plate with aluminum foil and incubate the plate at room temperature for 45 min. After the 45 min incubation, add 50 µL of Kinase Detection reagent to each well. Measure luminescence using the microplate reader. "

2.4 In vitro mTOR inhibitory assay

The inhibitory rate against PI3K of compounds **3b** and **3e** were assayed in-vitro using m-TOR/Raptor/MLST8 Complex, Catalog #: 40300 according to the manufacturer's directions. Assay was done using ADP-Glo (Promega) reagents with 100 μ M ATP, 0.1 mg/mL 4EBP1 and 5 mM MnCl2 in 25 μ L using kinase buffer (40 mM Tris HCl pH 7.4, 20 mM MgCl₂, 0.1 mg/mL BSA, and 2 mM DTT). Reaction was performed at 30°C for 45 min.

Conc	% inhibition
100	94
10	89
1	71
0.1	49
0.01	33

	Conc.	nd % inhibi	Excel-Fit
2.718282	100	94	99.6001
	10	89	99.6001
	1	71	67.2
	0.1	49	50.9999
	0.01	33	34.7999
	IC50	0.086	0.08675
			7.0356
			67.2

y = 7.0356ln(x) + 67.2

е

Conc	% inhibition
100	93
10	85
1	63
0.1	47
0.01	30

е		

j	Conc.	ınd % inhibit	Excel-Fit
	100	93	96.399864
2.718282	10	85	96.399864
	1	63	63.6
	0.1	47	47.200068
	0.01	30	30.800136
	IC50	0.148	0.1481591
			7.1224
			63.6

y = 7.1224ln(x) + 63.6

Conc	% inhibition
100	93
10	82
1	61
0.1	43
0.01	27

e	Conc.	nd % inhibi	Excel-Fit
	100	93	95.399836
2.718282	10	82	95.399836
	1	61	61.2
	0.1	43	44.100082
	0.01	27	27.000164
	IC50	0.221	0.2213228
			7.4264
			61.2

 $y = 7.4264 \ln(x) + 61.2$

e	Conc.	nd % inhibi	Excel-Fit
	100	92	93.000073
2.718282	10	75	93.000073
	1	50	51
	0.1	27	29.999963
	0.01	11	8.9999269
	IC50	0.896	0.8961507
			9.1202
			51

Conc	% inhibition
100	92
10	75
1	50
0.1	27
0.01	11

 $y = 9.1202 \ln(x) + 51$

e	Conc.	und % inhibiti	Excel-Fit
	100	95	96.19979
2.718282	10	82	96.19979
	1	68	66
	0.1	49	50.90011
	0.01	36	35.80021
	IC50	0.087	0.087175
			6.5578
			66

Conc	% inhibition
100	95
10	82
1	68
0.1	49
0.01	36

y = 6.5578ln(x) + 66

Conc	% inhibition
100	96
10	86
1	70
0.1	47
0.01	30

e	Conc.	ınd % inhibit	Excel-Fit
	100	96	99.99984
2.7183	10	86	99.99984
	1	70	65.8
	0.1	47	48.70008
	0.01	30	31.60016
	IC50	0.119	0.119129
			7.4264
			65.8

 $y = 7.4264 \ln(x) + 65.8$

2.5 Cell cycle analysis

Flow cytometry was used to analyze the cell cycle using ab139418 propidium iodide flow cytometry kit/BD (Abcam, Cambridge, UK), as directed by the manufacturer guidelines. leukemia HL60(TB) cells were treated with compounds **3b** and **3e** at their IC₅₀ values (2.32 and 2.29 μ M, respectively) for 24 h. The cells were washed twice with ice-cold phosphate buffer saline (PBS) and collected by centrifugation. The cells were then fixed using ice-cold 66% (v/v) ethanol, washed with PBS, and re-suspended with 0.1 mg/mL RNase to digest cellular RNA and thus minimize stained RNA in the background. The cells were next stained with PI, a fluorescent molecule that may bind to nucleic acid, at a concentration of 40 mg/mL. In cells, PI attaches to DNA in proportion to its amount. Because the DNA content of cells at different stages of the cell cycle differs, the fluorescence intensitycan be used to assess the stage of cell growth. FacsCalibur (BD Biosciences, USA) was used to estimate cell fluorescence, which was then examined using Cell-Quest software (Becton Dickinson). Cell cycle analysis of leukemia HL-60(TB) cells without any treatment was used as a control.

2.6 Apoptosis assay

According to the manufacturer's instructions, flow cytometry was used to analyze apoptosis using Annexin V and propidium iodide double-staining apoptosis detection kit (Biovision, USA). Annexin V is a phosphatidylserine (PS) binding protein with a high affinity. After beginning apoptosis, the latter is a cell membrane component that translocate from the inner face of the plasma membrane to the cell surface. PS can be detected on the cell surface using a fluorescent Annexin V conjugate. Leukemia HL-60(TB) cells ($5x10^5$) were exposed to compounds **3b** and **3e** at their IC₅₀ values and subsequently incubated for 24 h. After that, the cells were centrifuged and resuspended in 500 mL of binding buffer. Annexin V and PI double staining was accomplished by mixing 5 µL of Annexin V with 5 µL of PI. The cells were then incubated for 15 min. in the dark at room temperature. FacsCalibur was used to assess cell fluorescence after incubation (BD Biosciences, USA). The results were represented using dot-plot graphs.

2.7 Caspase-3 enzyme assay

The level of the apoptotic marker caspase-3 was measured using Invitrogen ELISA Kit Catalog # KHO1091. The procedure of the used kit was performed according to the manufacturer's instructions. Let all components reach room temperature before use. Gently combine all liquid reagents before use. Add 100 μ L of the standard diluent buffer to the zero standard wells. Add 100 μ L of standards and controls or diluted samples to the appropriate microtiter wells. Incubate for 2 h at room temperature. Pipette 100 μ L of caspase-3 (Active) detection antibody solution into each well. Incubate for 1 h at room temperature. Add 100 μ L antirabbit IgG HRP working solution to each well. Prepare the working dilution and incubate for 30 min. at room temperature and in the dark. Add 100 μ L of stop solution to each well. The solution in the wells should change from blue to yellow. Read the absorbance of each well at 450 nm. Read

the plate within 2 h after adding the stop solution. Use curve fitting software to generate the standard curve. Read the concentrations for unknown samples and controls from the standard curve.

3- Molecular modeling

3.1 Molecular modeling studies

Compound	Docking scorewith PI3K active site (PDB: 7PG6) (kcal/mol)	Interactions withPI3K active site	Docking scorewith mTOR active site (PDB: 4JT6) (kcal/mol)	Interactions withmTOR active site
3a	-6.7718	HB (Val851) HB (Asp933) Arene-H (Ile932)	-7.5046	HB (Gly2238) Arene-H (Met2345) Arene-H (Ile2356)
3c	-6.2879	HB (Arg770) Arene-H (Tyr836) Arene-H (Val850) Arene-H (Gln859)	-7.6092	HB (Trp2239) HB (Val2240) Arene-H (Glu2190) Arene-H (Met2345)
3d	-6.9187	HB (Lys802) HB (Val851) HB (Arg770) Arene-H (Tyr836) Arene-H (Val850) Arene-H (Gln859)	-7.6802	HB (Asp2195) HB (Val2240) Arene-H (Ile2237) Arene-H (Met2345) Arene-H (Ile2356)
3f	-7.1743	HB (Val851) HB (Asn853) Arene-H (Trp780)	-8.2853	HB (Met2345) HB (Leu2192) Arene-H (Trp2239) Arene-H (Glu2190) Arene-H (Met2345) Arene-H (Asp2357)
3g	-7.1772	HB (Val851) Arene-H (Tyr836) Arene-H (Trp780) Arene-H (Asn853)	-8.5718	HB (Met2345) Arene-H (Glu2190) Arene-H (Met2345) Arene-H (Asp2357) Arene-H (Ile2356)
3h	-7.4789	HB (Val851) Arene-H (Tyr836) Arene-H (Trp780) Arene-H (Lys802) Arene-H (Asn853)	-8.2342	HB (Gly2238) Arene-H (Glu2190) Arene-H (Met2345)
3i	-7.5763	HB (Val851) HB (Asn853) Arene-H(Lys802) Arene-H (Ser854) Arene-H (Trp780) Arene-H(Lys802)	-8.7294	HB (Gly2238) HB (Met2345) HB (Thr2245) Arene-H (Met2345) Arene-H (Glu2190)

Table S2. The docking scores and Lipinski parameters of the thiazole derivatives 3a, 3c, 3d, 3f–q

3j	-7.3285	HB (Ser851) Arene-H (Trp780) Arene-H (Ile932)	-8.3727	HB (Gly2238) HB (Val2240) Arene-H (Glu2190) Arene-H (Ile2237) Arene-H (Met2345) Arene-H (Ile2356)
3k	-8.1237	HB (Val851) HB (Gln859) Arene-H (Trp780) Arene-H (Lys802) Arene-H (Asp805) Arene-H (Val850)	-8.5287	HB (Gly2238) Arene-H (Glu2190) Arene-H (Ile2237) Arene-H (Met2345)
31	-7.6351	Arene-H (Tyr836) Arene-H (Ser774) Arene-H (Ala775) Arene-H (Lys802) Arene-H (Val850)	-8.5391	HB (Val2240) Arene-H (Ile2237) Arene-H (Trp2239)
3m	-7.9815	HB (Val851) Arene-H (Ser774) Arene-H (Trp780) Arene-H (Asn853) Arene-H (Ser854)	-8.5556	HB (Val2240) HB (Gly2238) Arene-H (Glu2190) Arene-H (Ile2356)
3n	-7.8469	HB (Val851) Arene-H(Arg770) Arene-H (Val850) Arene-H (Gln859)	-8.8540	HB (Gly2238) HB (Thr2245) Arene-H (Glu2190)
30	-7.3411	Arene-H (Tyr836) Arene-H (Trp780) Arene-H (Val850)	-8.7115	HB (Val2240) HB (Gly2238) Arene-H (Glu2190) Arene-H (Ile2356)
3р	-7.9445	HB (Val851) Arene-H (Trp780) Arene-H (Asn853) Arene-H (Ser854)	-8.8438	HB (Gly2238) Arene-H (Glu2190)
3q	-6.7034	HB (Val851) Arene-H (Val850) Arene-H (Gln859) Arene-H (Ile932)	-7.6112	HB (Glu2190) HB (Val2240) Arene-H (Glu2190) Arene-H (Ile2237)
Alpelisib	-8.1121	HB (Ser854) HB (Gln859) HB (Lys802) HB (Val851)		

Fig. S1. 2D and 3D interactions of the synthesized derivatives with PI3K active site (PDB: 7PG6).

Fig. S2. 2D and 3D interactions of the synthesized derivatives with mTOR active site (PDB: 4JT6).

3.2 Prediction of physicochemical, pharmacokinetic, and ADME properties

Compd.	MW (g/mol) <500	#H-bond acceptors <10	#H- bond donors <5	Log P o/w <5	Lipinski violations	TPSA (Å ²) <140	Rotatable bonds <10	GI	BBB	BA Score
3 a	460.51	6	1	4.12	0	129.8	9	Low	No	0.55
3b	339.41	4	2	3.72	0	94.98	6	High	No	0.55
3 c	358.8	4	1	3.47	0	111.34	5	High	No	0.55
3d	403.8	6	1	2.76	0	157.16	6	Low	No	0.55
3 e	393.25	4	1	4.02	0	111.34	5	Low	No	0.55
3f	434.47	5	1	3.19	0	138.27	6	Low	No	0.55
3g	468.37	3	1	4.53	0	92.45	5	High	No	0.55
3h	385.48	3	1	4.97	0	74.75	7	High	No	0.55
3i	430.48	5	1	4.41	0	120.57	8	Low	No	0.55
3j	415.51	4	1	4.96	0	83.98	8	High	No	0.55
3k	460.51	6	1	4.12	0	129.8	9	Low	No	0.55
31	449.95	4	1	5.48	0	83.98	8	High	No	0.55
3m	429.53	4	1	5.27	0	83.98	9	High	No	0.55
3n	474.53	6	1	4.51	0	129.8	10	Low	No	0.55
30	463.98	4	1	5.77	0	83.98	9	Low	No	0.55
3 p	508.43	4	1	5.94	1	83.98	9	Low	No	0.55
3 q	368.37	6	1	3.04	0	129.8	5	Low	No	0.55
Alpelisib	441.47	7	2	3.03	0	129.45	7	Low	No	0.55
Dactolisib	469.54	4	0	4.74	0	76.5	3	High	No	0.55

Table S3. The physicochemical and ADME properties of the target molecules.

3.3 ProTox-3.0 - Prediction of Toxicity of chemicals

			3 b		3 e	
Classification	Target	Shorthand	Prediction	Probability	Prediction	Probability
Organ toxicity	Neurotoxicity	neuro	Inactive	0.77	Inactive	0.53
Organ toxicity	Cardiotoxicity	cardio	Inactive	0.57	Inactive	0.71
Toxicity end points	Cytotoxicity	cyto	Inactive	0.65	Inactive	0.68
Toxicity end points	Clinical toxicity	clinical	Inactive	0.61	Inactive	0.64
Toxicity end points	Nutritional toxicity	nutri	Inactive	0.54	Inactive	0.50
Tox21-Nuclear receptor signalling	Androgen Receptor (AR)	nr_ar	Inactive	0.96	Inactive	0.98
Tox21-Nuclear receptor signalling pathways	Androgen Receptor Ligand Binding Domain (AR-LBD)	nr_ar_lbd	Inactive	0.98	Inactive	0.97
Tox21-Nuclear receptor signalling pathways	Estrogen Receptor Alpha (ER)	nr_er	Inactive	0.70	Inactive	0.78
Tox21-Nuclear receptor signalling pathways	Estrogen Receptor Ligand Binding Domain (ER-LBD)	nr_er_lbd	Inactive	0.93	Inactive	0.63
Tox21-Nuclear receptor signalling pathways	Peroxisome Proliferator Activated Receptor Gamma (PPAR-Gamma)	nr_ppar_gamma	Inactive	0.89	Inactive	0.92
Tox21-Stress response pathways	Nuclear factor (erythroid-derived 2)- like 2/antioxidant responsive element (nrf2/ARE)	sr_are	Inactive	0.85	Inactive	0.75
Tox21-Stress response pathways	Heat shock factor response element (HSE)	sr_hse	Inactive	0.85	Inactive	0.75
Tox21-Stress response pathways	Phosphoprotein (Tumor Supressor) p53	sr_p53	Inactive	0.78	Inactive	0.73
Tox21-Stress response pathways	ATPase family AAA domain-containing protein 5 (ATAD5)	sr_atad5	Inactive	0.76	Inactive	0.73
Molecular Initiating Events	Thyroid hormone receptor alpha (THRα)	mie_thr_alpha	Inactive	0.73	Inactive	0.83
Molecular Initiating Events	Thyroid hormone receptor beta (THRβ)	mie_thr_beta	Inactive	0.75	Inactive	0.85
Molecular Initiating Events	Ryanodine receptor (RYR)	mie_ryr	Inactive	0.82	Inactive	0.89
Molecular Initiating Events	GABA receptor (GABAR)	mie_gabar	Inactive	0.76	Inactive	0.86
Molecular Initiating Events	Glutamate N-methyl- D-aspartate receptor (NMDAR)	mie_nmdar	Inactive	0.94	Inactive	0.95
Molecular Initiating Events	alpha-amino-3- hydroxy-5-methyl-4- isoxazolepropionate receptor (AMPAR)	mie_ampar	Inactive	0.98	Inactive	0.99

Molecular Initiating Events	Kainate receptor (KAR)	mie_kar	Inactive	0.97	Inactive	1
Molecular Initiating Events	Achetylcholinesterase (AChE)	mie_ache	Inactive	0.86	Inactive	0.80
Molecular Initiating Events	Constitutive androstane receptor (CAR)	mie_car	Inactive	1	Inactive	1
Molecular Initiating Events	Pregnane X receptor (PXR)	mie_pxr	Inactive	0.83	Inactive	0.70
Molecular Initiating Events	NADH-quinone oxidoreductase (NADHOX)	mie_nadhox	Inactive	0.93	Inactive	0.98
Molecular Initiating Events	Voltage gated sodium channel (VGSC)	mie_vgsc	Inactive	0.73	Inactive	0.54
Molecular Initiating Events	Na+/I- symporter (NIS)	mie_nis	Inactive	0.80	Inactive	0.74
Metabolism	Cytochrome CYP1A2	CYP1A2	Inactive	0.78	Inactive	0.52
Metabolism	Cytochrome CYP2C19	CYP2C19	Inactive	0.66	Inactive	0.53
Metabolism	Cytochrome CYP2D6	CYP2D6	Inactive	0.70	Inactive	0.64
Metabolism	Cytochrome CYP2E1	CYP2E1	Inactive	0.99	Inactive	0.98

4- ¹H NMR and ¹³ C NMR spectra of the new derivatives. Compound 3a

Compound 3b

Compound 3c

Compound 3d

Compound 3e

Compound 3f

Compound 3g

Compound 3h

Compound 3i

Compound 3j

Compound 3k

Compound 31

Compound 3m

Compound 3n

Compound 3o

Compound 3p

Elemental analysis

Al-Azhar University The Regional Center for Mycology and Biotechnology

Requester Data:

Name: Dr Rasha Hasan

Authority: Faculty of Pharmacy, Cairo University Sample Data:

Sixteen samples had been submitted for elemental analysis.

Analysis Report:

Sample Code	С%	Н%	N%
3g Anti Br	54.09	4.03	15.17
3f Anti NO ₂	58.31	4.32	19.62
3i BA ₁ NO ₂	64.40	4.35	13.29
3h BA ₁ Ph	71.92	4.84	11.16
3k BA3 3NO2	62.43	4.51	12.43
31 BA ₃ 4Cl	63.98	4.59	9.52
3j BA ₃ Ph	69.09	5.21	10.34
3n BA ₄ 3NO ₂	63.45	4.72	12.07
3p BA ₄ Br	59.28	4.50	8.49
30 BA4Cl	64.59	4.87	9.29
3m BA ₄ Ph	70.06	5.63	10.02
3d CINO ₂ 3NO ₂	47.82	2.67	17.52
3e CINO ₂ 4Cl	49.05	2.71	14.53
3c CINO ₂ Ph	53.80	3.27	15.89
3b Ethoxy NO ₂	56.41	4.39	14.81
3a Ethoxy Ph	63.91	5.22	12.59

INVESTIGATOR

DIRECTOR