Supplementary Information (SI) for RSC Medicinal Chemistry. This journal is © The Royal Society of Chemistry 2024

**Electronic Supplementary Information** 

# Discovery of Selective LATS Inhibitors via Scaffold Hopping: Enhancing Drug-Likeness and Kinase Selectivity for Potential Applications in Regenerative Medicine

Guldana Issabayeva<sup>a,b</sup>, On-Yu Kang<sup>a</sup>, Seong Yun Choi<sup>a,b</sup>, Ji Young Hyun<sup>a,b</sup>,

Seong Jun Park<sup>a,b</sup>,\* Hei-Chul Jeung<sup>c</sup>,\* Hwan Jung Lim<sup>a,b,\*</sup>

<sup>a</sup> Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Daejeon 34114, Republic of Korea

<sup>b</sup> Department of Medicinal Chemistry and Pharmacology, University of Science &

Technology, 217 Gajeong-ro, Daejeon 34113, Republic of Korea

<sup>c</sup> Department of Medical Oncology, Yonsei University College of Medicine, 211 Eonju-ro,

Gangnam-gu, Seoul 06273, Republic of Korea

\*E-mail addresses: indium@krict.re.kr

# **TABLE OF CONTENTS**

- 1. Experimental section and synthesis
- 2. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra
- 3. In vitro kinase activity assay
- 4. Solubility
- 5. Experimentally obtained metabolic stability
- 6. Mouse pharmacokinetics
- 7. Kinase screening results
- 8. KRICT-AI assisted prediction of metabolic stability
- 9. Molecular docking simulation
- 10. References

#### 1. Experimental section and synthesis

Commercially available reactants and solvents were purchased from commercial suppliers and used without additional purification. Analytical thin layer chromatography (TLC) was performed on Kieselgel 60 F<sub>254</sub> glass plates precoated with a 0.2 mm thickness of silica gel. The TLC plates were visualized by shortwave (254 nm). Medium-pressure liquid chromatography (MPLC) was performed on CombiFlash NextGen 300+ apparatus using Buchi FlashPure EcoFlex silica cartridges with 50 µm particle size. Preparatory TLC was performed on Kieselgel 60 F<sub>254</sub> glass plates precoated with a 1.0 mm thickness of silica gel. <sup>1</sup>H NMR spectra were obtained at 300 MHz, 400 MHz or 500 MHz Bruker using CDCl<sub>3</sub>, MeOD-d<sub>4</sub> or DMSO- $d_6$  as a solvent. <sup>1</sup>H NMR assignment abbreviations are the following: singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of triplets (dt), and multiplet (m). <sup>13</sup>C NMR spectra were acquired at 101 MHz and 125 MHz Bruker using CDCl<sub>3</sub>, MeOD-d<sub>4</sub> or DMSO- $d_6$  as a solvent and TMS as an internal standard. Liquid-chromatography mass spectrometry (LCMS) with an electrospray ionization (ESI) method was used to obtain mass spectra. High-resolution mass spectra (HRMS) were recorded with an electron impact ionization (EI) using a sector field mass analyzer. The melting points were determined in capillary tubes on digital melting point apparatus electrothermal IA9300. Compound purity was measured using a Shimadzu Nexera lite HPLC system. Data acquisition and processing were performed using LabSolutions software. The HPLC conditions included a Sepax Proteomix RP-1000 column (5 µm, 1000Å, 4.6 × 150 mm), a flow rate of 0.5 mL/min, UV detection at 220 nm and 280 nm, and a gradient of 100% water (0.1% trifluoroacetic acid) maintained from 0 to 5 min. A linear gradient from 100% water (0.1% trifluoroacetic acid) to 90% acetonitrile (0.1% trifluoroacetic acid) occurred from 5 to 17 min, returning to 100% water (0.1% trifluoroacetic acid) in 5 min and maintained for an additional 10 min (35 min).

The compounds 4a-b, 5a-m, 6a-e were synthesized according to the reported procedure.<sup>1,2</sup>

#### 1.1 Procedure for the synthesis of 3-benzylthiazol-2(3H)-imine 4a

Benzyl bromide (1.1 eq., 32.95 mmol, 5.6 g) was added to a mixture containing 2aminothiazole (1.0 eq., 29.95 mmol, 3.0 g) dissolved in 21 mL of N,N-dimethylformamide (DMF). The resulting reaction mixture was heated at 50 °C for 18 h. After cooling, the reaction was concentrated under reduced pressure by rotary evaporator. The residue was dissolved in ethyl acetate (EA) and diluted with aqueous 10 M NaOH at 0 °C. The reaction mixture was stirred for additional 1 h. Following that, the reaction mixture was extracted with EA and water, the organic layer was collected and washed with a saturated aqueous NaCl solution (brine). Subsequently, the organic phase was dried using anhydrous Na<sub>2</sub>SO<sub>4</sub>, and the solvent was evaporated under reduced pressure. Afterwards, the residue obtained was purified by MPLC (methanol:dichloromaethane (DCM) = 10:90), providing 3-benzylthiazol-2(3*H*)-imine **4a** as yellow oil.

## 1.2 Procedure for the synthesis of 3-benzyloxazol-2(3H)-imine 4b

To a solution of 2-aminooxazole (1.0 eq., 1.1893 mmol, 100 mg) dissolved in 5 mL of acetone was added benzyl bromide (1.1 eq., 1.3082 mmol, 223 mg). The reaction mixture was heated at 60 °C for 6 h. After cooling, the reaction was concentrated under reduced pressure by rotary evaporator. The residue obtained was dried under high vacuum pump providing 3-benzyloxazol-2(3H)-imine **4b** as a yellow oil. The crude product was used further without purification.

## 1.3 General procedure for the synthesis of compounds 5a-f, 5k-m and 6c-e

To a solution containing carboxylic acid (0.8 eq.) dissolved in 4 mL of DMF was added 1-[bis(dimethylamino)methylene]-1*H*-1,2,3-triazolo[4,5-*b*]pyridinium 3-oxid hexafluorophosphate (HATU) (1.5 eq.) at 0 °C. After the reaction was stirred for 30 min, *N*,*N*diisopropylethylamine (DIPEA) (3.0 eq.) and imine (1.0 eq.) were added to the reaction mixture. The reaction temperature was increased to rt and stirred for overnight. After the reaction was completed, it was quenched by addition of water. In case solid formation was observed, it was filtered out and dried. Other than that, the reaction mixture was extracted with EA, the organic layer was collected and washed with a brine. Subsequently, the organic phase was dried using anhydrous Na<sub>2</sub>SO<sub>4</sub>, and the solvent was evaporated under reduced pressure. The product was further purified by MPLC (methanol:DCM = 10:90) or by preparatory TLC (methanol:DCM = 5:95), providing compounds **5a-f, 5k-m** and **6c-e**.

## 1.4 General procedure for the synthesis of compounds 6a-b

To a solution containing carboxylic acid (1.0 eq.) dissolved in pyridine (40 eq.) was added N,N,N',N'-Tetramethyl-O-(1*H*-benzotriazol-1-yl)uronium hexafluorophosphate (HBTU) (2.0 eq.) at 0 °C. After the reaction was stirred for 30 min, 2-aminothiazole (1.5 eq.) was added to the reaction mixture. The reaction temperature was gradually increased to 80 °C and stirred for

16 h. The reaction temperature was increased to 100 °C and the reaction was stirred for an additional 5 h. After cooling down, the reaction was quenched by ice-cold water. The solid formed was filtered out, washed with water and acetonitrile, then dried, providing **6a-b**.

1.5 Procedure for the synthesis of (Z)-1-benzyl-*N*-(3-benzylthiazol-2(3*H*)-ylidene)-1*H*-pyrrolo[2,3-b]pyridine-3-carboxamide **5**i

Step 1.

(Z)-N-(3-benzylthiazol-2(3H)-ylidene)-1H-pyrrolo[2,3-b]pyridine-3-carboxamide (Truli) **1** was synthesized according to the reported procedure.<sup>1</sup> All the analytical data were compared and matched with the reference compound Truli.

Step 2.

A compound 1 (1.0 eq., 0.0598 mmol, 20 mg) obtained in the abovementioned step was dissolved in 1 mL of DMF, and sodium hydride (60% in mineral oil) (1.5 eq., 3.6 mg) was added to the resulting solution at 0 °C. After 10 min, benzyl bromide (1.2 eq., 0.0718 mmol, 12 mg) was added to the reaction mixture. The reaction was stirred at rt for 1.5 h. After cooling, the reaction was quenched by slowly addition of saturated aqueous ammonium chloride solution. The reaction was extracted with EA and water, the organic layer was collected and washed with brine. Afterwards, the organic layer was dried using anhydrous Na<sub>2</sub>SO<sub>4</sub>, and the solvent was evaporated under reduced pressure. Afterwards, the residue obtained was purified by MPLC (methanol:DCM = 10:90), providing (Z)-1-benzyl-*N*-(3-benzylthiazol-2(3*H*)-ylidene)-1*H*-pyrrolo[2,3-*b*]pyridine-3-carboxamide **5i** as a white solid.

## 1.6 General procedure for the synthesis of compounds 5g-h and 5j

A corresponding carboxamide (1.0 eq.) was dissolved in DMF, and benzyl bromide (1.2 eq.) was added to the resulting solution. The reaction mixture was heated to 60 °C and stirred for overnight. After cooling down, the reaction mixture was diluted with EA and aqueous 10 M NaOH at 0 °C. The reaction mixture was stirred for additional 1 h. If the formation of solid was observed, the solid was filtered out, washed with water and dried. If the formation of the solid was not observed, the reaction mixture was extracted with EA and water, the organic layer was collected, washed with brine and dried using anhydrous Na<sub>2</sub>SO<sub>4</sub>. The solvent was removed

using rotary evaporator and dried under high vacuum. The product was purified by MPLC (methanol:DCM = 10:90), providing corresponding compounds **5g-h** and **5j**.



**3-benzylthiazol-2(3***H***)-imine (4a)**: Yield: 67%; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.40–7.27 (m, 5H), 6.35 (d, *J* = 5.0 Hz, 1H), 5.79 (d, *J* = 5.0 Hz, 1H), 4.91 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 164.89, 136.71, 128.97, 127.93, 127.85, 127.08, 97.96, 49.11; LCMS (ESI) *m/z*: 191.00 [M+H]<sup>+</sup>.



(Z)-*N*-(3-benzylthiazol-2(3*H*)-ylidene)benzamide (5a): Yield: 56%; m.p.: 68-69 °C; HPLC: 95.9 % ( $t_{\rm R}$  =10.0 min); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.40–8.33 (m, 2H), 7.51–7.41 (m, 3H), 7.39–7.31 (m, 5H), 6.96 (d, *J* = 4.8 Hz, 1H), 6.65 (d, *J* = 4.7 Hz, 1H), 5.50 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  174.29, 168.28, 137.04, 135.73, 133.60, 131.61, 130.26, 129.44, 129.20, 128.58, 128.31, 128.18, 125.72, 109.54, 52.12; LCMS (ESI) *m/z*: 295.1 [M+H]<sup>+</sup>.



5b

(Z)-*N*-(3-benzylthiazol-2(3*H*)-ylidene)nicotinamide (5b): Yield: 56%; m.p.: 69-70 °C; HPLC: 99.0 % ( $t_{\rm R}$  =2.7 min); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  9.54 (dd, J = 2.1, 0.9 Hz, 1H), 8.70 (dd, J = 4.8, 1.8 Hz, 1H), 8.54 (dt, J = 7.9, 2.1 Hz, 1H), 7.41–7.31 (m, 6H), 7.02 (d, J = 4.7 Hz, 1H), 6.72 (d, J = 4.7 Hz, 1H), 5.51 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  172.58, 168.27, 151.88, 151.08, 136.85, 135.38, 132.50, 129.25, 128.69, 128.23, 126.06, 123.28, 109.95, 52.30; LCMS (ESI) *m/z*: 296.10 [M+H]<sup>+</sup>.



(Z)-*N*-(3-benzylthiazol-2(3*H*)-ylidene)-1*H*-indole-3-carboxamide (5c): Yield: 27%; m.p.: 209-210 °C; HPLC: 99.6% ( $t_{\rm R}$  = 14.9 min); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.08 (s, 1H), 8.58–8.49 (m, 1H), 8.08 (d, J = 2.9 Hz, 1H), 7.42–7.30 (m, 6H), 7.24–7.16 (m, 2H), 6.87 (d, J = 4.8 Hz, 1H), 6.55 (d, J = 4.8 Hz, 1H), 5.48 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  173.07, 166.91, 136.88, 135.88, 131.37, 129.11, 128.38, 128.16, 126.38, 125.44, 122.54, 122.22, 121.39, 116.06, 111.77, 108.85, 51.91; LCMS (ESI) *m/z*: 334.00 [M+H]<sup>+</sup>.



(Z)-*N*-(3-benzylthiazol-2(3*H*)-ylidene)-1-methyl-1*H*-indole-3-carboxamide (5d): Yield: 9%; m.p.: 184-185 °C; HPLC: 99.3% ( $t_{\rm R} = 17.3 \text{ min}$ ); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.52 (d, J = 7.1 Hz, 1H), 7.96 (s, 1H), 7.40–7.31 (m, 5H), 7.30–7.20 (m, 3H), 6.88 (d, J = 4.8 Hz, 1H), 6.57 (d, J = 4.8 Hz, 1H), 5.51 (s, 2H), 3.84 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  172.67, 166.88, 137.73, 136.08, 135.16, 129.19, 128.46, 128.22, 127.25, 125.25, 122.68, 122.36, 121.40, 114.90, 109.58, 108.82, 51.92, 33.47; LCMS (ESI) *m/z*: 348.1 [M+H]<sup>+</sup>.



(Z)-*N*-(3-benzylthiazol-2(3*H*)-ylidene)-1*H*-pyrrolo[2,3-*c*]pyridine-3-carboxamide (5e): Yield: 29%; m.p.: 149-150 °C; HPLC: 98.2% ( $t_{\rm R}$  = 4.5 min); <sup>1</sup>H NMR (500 MHz, MeOD- $d_4$ )  $\delta$  8.68 (s, 1H), 8.25 (s, 1H), 8.23 (d, *J* = 5.6 Hz, 1H), 8.09 (d, *J* = 5.6 Hz, 1H), 7.39–7.26 (m, 5H), 7.24 (d, J = 4.6 Hz, 1H), 6.83 (d, J = 4.6 Hz, 1H), 5.50 (s, 2H); <sup>13</sup>C NMR (101 MHz, MeOD- $d_4$ )  $\delta$  173.27, 168.70, 138.20, 137.69, 137.63, 135.28, 134.12, 133.80, 129.95, 129.17, 128.78, 128.22, 118.13, 116.82, 110.51, 52.87; LCMS (ESI) *m/z*: 335.00 [M+H]<sup>+</sup>.



5f

(Z)-*N*-(3-benzylthiazol-2(3*H*)-ylidene)-1*H*-pyrrolo[3,2-*c*]pyridine-3-carboxamide (5f): Yield: 41%; HPLC: 98.8% ( $t_{\rm R}$  = 4.7 min); <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.52 (s, 1H), 8.28 (d, *J* = 5.8 Hz, 1H), 8.25 (s, 1H), 7.62 (d, *J* = 4.7 Hz, 1H), 7.53 (d, *J* = 5.8 Hz, 1H), 7.43 (d, *J* = 7.1 Hz, 2H), 7.36 (t, *J* = 7.4 Hz, 2H), 7.29 (t, *J* = 7.3 Hz, 1H), 7.01 (d, *J* = 4.7 Hz, 1H), 5.55 (s, 2H); <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  170.43, 166.05, 143.04, 140.66, 139.45, 136.73, 132.95, 128.74, 127.84, 127.79, 127.31, 122.66, 115.31, 108.79, 107.78, 50.94; LCMS (ESI) *m/z*: 335.00 [M+H]<sup>+</sup>.



(Z)-6-benzyl-*N*-(3-benzylthiazol-2(3*H*)-ylidene)-6*H*-pyrrolo[2,3-*c*]pyridine-3carboxamide (5g): Yield: 9%; HPLC: 97.2 % ( $t_R = 10.4 \text{ min}$ ); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 9.33 (s, 1H), 8.73 (d, J = 6.7 Hz, 1H), 8.66 (s, 1H), 8.10 (s, 1H), 7.95 (d, J = 6.7 Hz, 1H), 7.50– 7.27 (m, 10H), 7.02 (d, J = 4.7 Hz, 1H), 6.72 (d, J = 4.7 Hz, 1H), 5.61 (s, 2H), 5.47 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  170.85, 169.85, 142.60, 135.82, 135.18, 132.58, 131.42, 130.44, 130.09, 129.64, 129.37, 128.80, 128.74, 127.98, 126.22, 119.85, 118.27, 109.76, 65.00, 52.36; LCMS (ESI) *m/z*: 425.20 [M+H]<sup>+</sup>.



### (Z)-5-benzyl-N-(3-benzylthiazol-2(3H)-ylidene)-5H-pyrrolo[3,2-c]pyridine-3-

**carboxamide (5h)**: Yield: 64%; m.p.: 189-190 °C; HPLC: 99.0% ( $t_{\rm R} = 10.1 \text{ min}$ ); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  9.23 (s, 1H), 8.86 (s, 1H), 7.69 (d, J = 6.8 Hz, 1H), 7.52 (dd, J = 6.8, 1.9 Hz, 1H), 7.43–7.27 (m, 8H), 7.16 (dd, J = 6.8, 2.9 Hz, 2H), 6.90 (d, J = 4.8 Hz, 1H), 6.54 (d, J = 4.8 Hz, 1H), 5.44 (s, 2H), 5.37 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>+MeOD- $d^4$ )  $\delta$  172.20, 166.70, 135.75, 135.61, 134.54, 129.33, 129.21, 129.1, 129.03, 128.33, 127.86, 127.59, 125.70, 113.94, 108.75, 62.96, 51.79; LCMS (ESI) m/z: 425.10 [M+H]<sup>+</sup>.



(**Z**)-1-benzyl-*N*-(3-benzylthiazol-2(3*H*)-ylidene)-1*H*-pyrrolo[2,3-*b*]pyridine-3carboxamide (5i): Yield: 61%; m.p.: 95-96 °C; HPLC: 98.1% (*t*<sub>R</sub> = 17.7 min); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.68 (dd, *J* = 7.9, 1.6 Hz, 1H), 8.34 (dd, *J* = 4.7, 1.6 Hz, 1H), 8.03 (s, 1H), 7.35– 7.20 (m, 10H), 7.15 (dd, *J* = 7.9, 4.7 Hz, 2H), 6.87 (d, *J* = 4.8 Hz, 1H), 6.56 (d, *J* = 4.8 Hz, 1H), 5.50 (s, 2H), 5.44 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 172.09, 167.13, 148.43, 143.70, 137.08, 135.80, 133.60, 130.84, 129.19, 128.93, 128.51, 128.12, 127.97, 127.85, 125.46, 119.67, 117.75, 114.00, 109.08, 52.02, 48.34; LCMS (ESI) *m/z*: 425.3 [M+H]<sup>+</sup>.



(Z)-7-benzyl-N-(3-benzylthiazol-2(3*H*)-ylidene)-7*H*-pyrrolo[2,3-*b*]pyridine-3carboxamide (5j): Yield: 63%; m.p.: 107-108 °C; HPLC: 96.5% ( $t_{\rm R} = 10.4$  min); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.87 (dd, J = 7.5, 1.2 Hz, 1H), 8.75 (s, 1H), 7.59 (dd, J = 6.3, 1.2 Hz, 1H), 7.38–7.27 (m, 10H), 6.95 (dd, J = 7.5, 6.3 Hz, 1H), 6.87 (d, J = 4.8 Hz, 1H), 6.50 (d, J = 4.8 Hz, 1H), 5.88 (s, 2H), 5.44 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  172.42, 166.39, 151.60, 150.81, 136.03, 134.82, 133.59, 129.56, 129.30, 129.15, 129.03, 128.80, 128.51, 128.28, 128.16, 125.33, 115.80, 112.22, 108.37, 55.72, 51.86; LCMS (ESI) *m/z*: 425.00 [M+H]<sup>+</sup>.



(Z)-*N*-(3-benzylthiazol-2(3*H*)-ylidene)-7*H*-pyrrolo[2,3-*d*]pyrimidine-5-carboxamide (5k): Yield: 76%; m.p.: 224-225 °C; HPLC: 99.2% ( $t_R = 3.1 \text{ min}$ ); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  10.22 (s, 1H), 9.73 (s, 1H), 8.94 (s, 1H), 8.18 (s, 1H), 7.32–7.40 (m, 5H), 6.97 (d, J = 4.7 Hz, 1H), 6.68 (d, J = 4.7 Hz, 1H), 5.53 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>+MeOD- $d_4$ )  $\delta$  171.19, 167.55, 151.85, 151.00, 150.91, 135.22, 132.07, 129.03, 128.37, 127.65, 126.09, 117.29, 114.90, 109.66, 51.99; HRMS (EI) calcd. for C<sub>17</sub>H<sub>13</sub>N<sub>5</sub>OS *m/z*: 335.0841, found *m/z*: 335.0837 [M]<sup>+</sup>.



(Z)-*N*-(3-benzylthiazol-2(3*H*)-ylidene)-1*H*-pyrazolo[3,4-*b*]pyridine-3-carboxamide (5l): Yield: 28%; m.p.: 244-245 °C; HPLC: 98.8% ( $t_{\rm R} = 9.5 \text{ min}$ ); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$ 12.13 (s, 1H), 8.79 (dd, J = 8.1, 1.6 Hz, 1H), 8.62 (dd, J = 4.6, 1.6 Hz, 1H), 7.33–7.37 (m, 5H), 7.25 (tr, J = 6 Hz, 1H), 6.98 (d, J = 4.7 Hz, 1H), 6.74 (d, J = 4.7 Hz, 1H), 5.60 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>+MeOD- $d_4$ )  $\delta$  169.58, 168.24, 152.28, 148.84, 135.24, 132.92, 129.12, 128.54, 128.07, 126.22, 118.32, 115.09, 110.28, 52.24; HRMS (EI) calcd. for C<sub>17</sub>H<sub>13</sub>N<sub>5</sub>OS *m/z*: 335.0841, found *m/z*: 335.0837 [M]<sup>+</sup>.



(Z)-2-amino-*N*-(3-benzylthiazol-2(3*H*)-ylidene)-4-oxo-4,7-dihydro-3*H*-pyrrolo[2,3*d*]pyrimidine-5-carboxamide (5m): Yield: 7%; HPLC: 95.0% ( $t_{\rm R} = 1.5$  min); <sup>1</sup>H NMR (300 MHz, MeOD- $d_4$ )  $\delta$  7.66 (s, 1H), 7.34 (s, 6H), 6.61 (s, 1H), 5.42 (s, 2H); <sup>13</sup>C NMR (101 MHz, MeOD- $d_4$ )  $\delta$  191.11, 165.76, 147.19, 135.96, 129.16, 128.63, 128.53, 127.75, 126.85, 126.19, 119.49, 106.63, 39.38; LCMS (ESI) *m/z*: 367.37 [M+H]<sup>+</sup>.



(Z)-*N*-(thiazol-2(3*H*)-ylidene)-1*H*-pyrrolo[2,3-*b*]pyridine-3-carboxamide (6a): Yield: 56%; m.p.: 232-233 °C; HPLC: 97.1% ( $t_{\rm R} = 2.4 \text{ min}$ ); <sup>1</sup>H NMR (300 MHz, DMSO- $d_6$ )  $\delta$  12.45 (s, 1H), 12.27 (s, 1H), 8.68 (d, J = 2.7 Hz, 1H), 8.54 (dd, J = 7.9, 1.7 Hz, 1H), 8.34 (dd, J = 4.7, 1.7 Hz, 1H), 7.52 (d, J = 3.6 Hz, 1H), 7.25 (dd, J = 7.9, 4.7 Hz, 1H), 7.21 (d, J = 3.6 Hz, 1H); <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  161.80, 158.67, 148.62, 144.12, 137.48, 130.59, 129.36, 118.76, 117.64, 113.03, 107.08; LCMS (ESI) *m/z*: 245.00 [M+H]<sup>+</sup>.



(Z)-*N*-(thiazol-2(3*H*)-ylidene)-7*H*-pyrrolo[2,3-*d*]pyrimidine-5-carboxamide (6b): Yield: 69%; m.p.: 302-303 °C; HPLC: 99.3% ( $t_{\rm R} = 0.98 \text{ min}$ ); <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  12.86 (s, 1H), 12.46 (s, 1H), 9.47 (s, 1H), 8.89 (s, 1H), 8.71 (d, J = 2.6 Hz, 1H), 7.54 (d, J = 3.5 Hz,

1H), 7.25 (d, J = 3.5 Hz, 1H); <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  161.03, 158.45, 152.25, 151.88, 150.18, 137.57, 131.41, 117.04, 113.36, 107.63; LCMS (ESI) *m/z*: 246.00 [M+H]<sup>+</sup>.



(Z)-*N*-(3-benzyloxazol-2(3*H*)-ylidene)-7*H*-pyrrolo[2,3-*d*]pyrimidine-5-carboxamide (6c): Yield: 38%; m.p.: 210-211 °C; HPLC: 95.4% ( $t_{\rm R} = 1.3 \text{ min}$ ); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  12.52 (s, 1H), 9.39 (s, 1H), 8.79 (s, 1H), 8.13 (d, J = 2.5 Hz, 1H), 7.72 (d, J = 1.7 Hz, 1H), 7.54 (d, J = 1.7 Hz, 1H), 7.45–7.29 (m, 5H), 5.13 (s, 2H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  168.39, 156.38, 151.95, 151.42, 150.21, 136.00, 132.19, 132.07, 128.80, 128.00, 127.74, 117.69, 116.76, 114.81, 47.98; LCMS (ESI) *m/z*: 320.10 [M+H]<sup>+</sup>.



(Z)-*N*-(3-benzyloxazol-2(3*H*)-ylidene)-1*H*-pyrazolo[3,4-*b*]pyridine-3-carboxamide (6d): Yield: 16%; m.p.: 170-171 °C; HPLC: 99.7% ( $t_{\rm R} = 4.5 \text{ min}$ ); <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  8.52 (d, J = 4.4 Hz, 1H), 8.48 (dd, J = 8.1, 1.6 Hz, 1H), 7.80 (d, J = 1.7 Hz, 1H), 7.61 (d, J =1.7 Hz, 1H), 7.45–7.30 (m, 5H), 7.21 (dd, J = 8.1, 4.5 Hz, 1H), 5.16 (s, 2H); <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  166.67, 157.09, 152.34, 148.67, 141.86, 135.80, 132.55, 131.83, 128.83, 128.03, 127.61, 118.07, 118.00, 114.04, 48.17; LCMS (ESI) *m/z*: 320.00 [M+H]<sup>+</sup>.



(Z)-*N*-(3-benzylthiazol-2(3*H*)-ylidene)-7*H*-pyrrolo[2,3-*d*]pyrimidine-6-carboxamide (6e): Yield: 46%; m.p.: 249-250 °C; HPLC: 95.0% ( $t_{\rm R}$  = 4.3 min); <sup>1</sup>H NMR (300 MHz, DMSO-*d*<sub>6</sub>) δ 12.67 (s, 1H), 9.12 (s, 1H), 8.84 (s, 1H), 7.70 (d, J = 4.6 Hz, 1H), 7.47 (d, J = 7.0 Hz, 2H), 7.42–7.24 (m, 5H), 7.14 (d, J = 4.6 Hz, 1H), 5.66 (s, 2H); <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ ) δ 166.81, 166.51, 152.71, 151.38, 151.26, 137.08, 136.68, 128.71, 128.29, 128.23, 127.94, 127.83, 118.50, 110.04, 103.15, 50.93; LCMS (ESI) m/z: 336.37 [M+H]<sup>+</sup>.



2. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of **4a**, **5a-m** and **6a-e**.

Figure S1. <sup>1</sup>H NMR of 4a (300 MHz, CDCl<sub>3</sub>).



Figure S2. <sup>13</sup>C NMR of **4a** (101 MHz, CDCl<sub>3</sub>).



Figure S3. <sup>1</sup>H NMR of 5a (300 MHz, CDCl<sub>3</sub>).



Figure S4. <sup>13</sup>C NMR of **5a** (101 MHz, CDCl<sub>3</sub>).

![](_page_14_Figure_0.jpeg)

Figure S5. <sup>1</sup>H NMR of **5b** (300 MHz, CDCl<sub>3</sub>).

![](_page_14_Figure_2.jpeg)

Figure S6.  ${}^{13}$ C NMR of **5b** (101 MHz, CDCl<sub>3</sub>).

![](_page_15_Figure_0.jpeg)

Figure S7. <sup>1</sup>H NMR of **5c** (400 MHz, CDCl<sub>3</sub>).

![](_page_15_Figure_2.jpeg)

Figure S8.  $^{13}$ C NMR of **5c** (125 MHz, CDCl<sub>3</sub>).

![](_page_16_Figure_1.jpeg)

Figure S9. <sup>1</sup>H NMR of **5d** (400 MHz, CDCl<sub>3</sub>).

![](_page_17_Figure_0.jpeg)

![](_page_18_Figure_0.jpeg)

Figure S12. <sup>13</sup>C NMR of **5e** (101 MHz, MeOD-*d*<sub>4</sub>).

![](_page_19_Figure_0.jpeg)

Figure S13. <sup>1</sup>H NMR of **5f** (400 MHz, DMSO- $d_6$ ).

![](_page_19_Figure_2.jpeg)

![](_page_20_Figure_0.jpeg)

![](_page_20_Figure_1.jpeg)

Figure S15. <sup>1</sup>H NMR of **5**g (400 MHz, CDCl<sub>3</sub>).

![](_page_21_Figure_0.jpeg)

![](_page_22_Figure_0.jpeg)

Figure S18. <sup>13</sup>C NMR of **5h** (101 MHz,  $CDCl_3+MeOD-d_4$ ).

# Figure S17. <sup>1</sup>H NMR of **5h** (400 MHz, CDCl<sub>3</sub>).

![](_page_23_Figure_0.jpeg)

# Figure S19. <sup>1</sup>H NMR of **5i** (400 MHz, CDCl<sub>3</sub>).

![](_page_23_Figure_2.jpeg)

150 140 100 90 f1 (ppm) 

![](_page_24_Figure_0.jpeg)

Figure S21. <sup>1</sup>H NMR of **5**j (400 MHz, CDCl<sub>3</sub>).

![](_page_25_Figure_0.jpeg)

![](_page_26_Figure_0.jpeg)

Figure S24. <sup>13</sup>C NMR of **5**k (101 MHz, CDCl<sub>3</sub>+MeOD- $d_4$ ).

![](_page_27_Figure_0.jpeg)

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0. f1 (ppm)

# Figure S25. <sup>1</sup>H NMR of **5**I (300 MHz, CDCl<sub>3</sub>).

![](_page_27_Figure_3.jpeg)

![](_page_28_Figure_0.jpeg)

![](_page_28_Figure_1.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_29_Figure_1.jpeg)

Figure S29. <sup>1</sup>H NMR of **6a** (300 MHz, DMSO-*d*<sub>6</sub>).

![](_page_30_Figure_0.jpeg)

Figure S30. <sup>13</sup>C NMR of **6a** (101 MHz, DMSO-*d*<sub>6</sub>).

![](_page_30_Figure_2.jpeg)

![](_page_31_Figure_0.jpeg)

Figure S32. <sup>13</sup>C NMR of **6b** (101 MHz, DMSO-*d*<sub>6</sub>).

# Figure S31. <sup>1</sup>H NMR of **6b** (400 MHz, DMSO-*d*<sub>6</sub>).

![](_page_32_Figure_0.jpeg)

# Figure S33. <sup>1</sup>H NMR of **6c** (400 MHz, DMSO- $d_6$ ).

![](_page_32_Figure_2.jpeg)

100 90 f1 (ppm) 90 180 160 150 

![](_page_33_Figure_0.jpeg)

# Figure S34. <sup>13</sup>C NMR of **6c** (101 MHz, DMSO-*d*<sub>6</sub>).

Figure S35. <sup>1</sup>H NMR of **6d** (400 MHz, DMSO-*d*<sub>6</sub>).

![](_page_34_Figure_0.jpeg)

![](_page_34_Figure_1.jpeg)

![](_page_35_Figure_0.jpeg)

Figure S38. <sup>13</sup>C NMR of **6e** (101 MHz, DMSO-*d*<sub>6</sub>)

3. In vitro kinase activity assay

The Eurofins Kinase Profiler service was requested and used for obtaining in vitro kinase activity data. Kinase inhibition was determined at 1  $\mu$ M compound concentration and at 90  $\mu$ M ATP concentration for LATS1(h) and at 155  $\mu$ M for LATS2(h) kinases for compounds 1, 5a-m and 6a-e. For LATS1(h) and LATS2(h), the selected kinase was incubated with 8 mM MOPS pH 7.0, 0.2 mM EDTA, 250  $\mu$ M KKLNRTLSFAEPG, 10 mM Magnesium acetate and [ $\gamma$ -33P-ATP] (specific activity and concentration as required). The read MeOD- $d_4$  d by the addition of the Mg/ATP mix. After incubation for 40 minutes at room temperature, the reaction is stopped by the addition of phosphoric acid to a concentration of 0.5%. 10  $\mu$ I of the stopped reaction is spotted onto a P30 filtermat and washed four times for 4 minutes in 0.425% phosphoric acid and once in methanol prior to drying and scintillation counting. The values represent the average of two independent experiments. The IC<sub>50</sub> data for compounds 1, 5k, and 5l was also determined using the Eurofins IC50 Profiler service at 90  $\mu$ M ATP concentration for LATS1(h) and at 155  $\mu$ M for LATS2(h) kinases. The IC<sub>50</sub> curves (refer to Figures S39-S41) were generated using 9 test compound concentrations, diluted in half-log increments from

#### Figure S37. <sup>1</sup>H NMR of **6e** (300 MHz, DMSO- $d_6$ ).

10  $\mu$ M to 1 nM, alongside vehicle control wells. The values represent the mean of two independent experiments.

Kinase: LATS1(h)

ATP Concentration: 90  $\mu M$ 

Compound concentration: 1  $\mu M$ 

| Compound  | Enzymatic activity<br>(% Control) | Mean±SD |  |
|-----------|-----------------------------------|---------|--|
| 1 (Truli) | 3                                 | 3±1     |  |
|           | 106                               | 106±0   |  |
|           | 106                               | 124+2   |  |
| 50        | 132                               | 154±2   |  |
| 5c        | 136                               | 145±15  |  |
| 5d        | 104                               | 103±2   |  |
| 5e        | 120                               | 114+10  |  |
|           | 107                               | 117-10  |  |
| 5f        | 110                               | 111±1   |  |
| 5g        | 107                               | 106±2   |  |
| 5h        | 104                               | 104±0   |  |
|           | 104<br>96                         |         |  |
| 5i        | 91                                | 94±4    |  |
| 5j        | 64<br>50                          | 57±10   |  |

Table S1. In vitro kinase activity for LATS1

| 5k | 19           22 | 21±2    |
|----|-----------------|---------|
| 51 | 8               | 8±0     |
| 5m | 102<br>96       | . 99±4  |
| 6a | 84           79 | - 82±4  |
| 6b | 103<br>97       | - 100±4 |
| 6c | 50<br>53        | 52±2    |
| 6d | 32<br>28        | - 30±3  |
| 6e | 96<br>96        | 96±0    |

Kinase: LATS2(h)

ATP Concentration: 155 µM

Compound concentration:  $1 \ \mu M$ 

Table S2. In vitro kinase activity for LATS2

| Compound  | Enzymatic activity<br>(% Control) Mean± |       |
|-----------|-----------------------------------------|-------|
| 1 (Truli) | 0<br>1±1                                |       |
| 5a        | <u>98</u><br>10                         |       |
| 5b        | 109<br>108                              | 109±1 |
| 5c        | 87<br>97                                | 92±7  |

| 5d    | 90  | 90+0  |  |
|-------|-----|-------|--|
|       | 89  | 90±0  |  |
| 5e    | 103 | 109+7 |  |
|       | 114 | 109±7 |  |
| 56    | 107 | 102+7 |  |
| 51    | 97  | 102-1 |  |
| 50    | 83  | 86+1  |  |
| 5g    | 89  | 0014  |  |
| 5h    | 104 | 104+0 |  |
| 511   | 104 | 104±0 |  |
| 5i    | 55  | 55+1  |  |
| 51    | 54  | 55±1  |  |
| 5i    | 25  | 23+3  |  |
| 5     | 20  |       |  |
| 5k    | 22  | 21+2  |  |
| ЭК    | 19  |       |  |
| 51    | 0   | 1+1   |  |
| JI JI | 1   | 1-1   |  |
| 5m    | 112 | 111+2 |  |
|       | 109 | 111-2 |  |
| 6a    | 80  | 78+4  |  |
|       | 75  | ,0_1  |  |
| 6h    | 106 | 103+4 |  |
| 00    | 100 | 105-1 |  |
| 60    | 59  | 61+2  |  |
| UC    | 62  | 01-2  |  |
| 6d    | 30  | 28+3  |  |
|       | 26  |       |  |
| бе    | 108 | 107+2 |  |
|       | 105 | 107-2 |  |
|       |     |       |  |

Table S3. Estimated  $IC_{50}$  values of 1, 5k and 5l

| Compound  | Kinase   | $IC_{50} (nM)$ |
|-----------|----------|----------------|
| 1 (Truli) | LATS1(h) | 22             |
| 1 (Truli) | LATS2(h) | 6              |
| 5k        | LATS1(h) | 265            |
| 5k        | LATS2(h) | 395            |
| 51        | LATS1(h) | 43             |
| 51        | LATS2(h) | 24             |

![](_page_39_Figure_1.jpeg)

Figure S39. Estimated IC<sub>50</sub> values of **1** (Truli) measured at 90  $\mu$ M ATP concentration for LATS1(h) and at 155  $\mu$ M ATP concentration for LATS2(h).

![](_page_40_Figure_0.jpeg)

Figure S40. Estimated IC<sub>50</sub> values of **5k** measured at 90  $\mu$ M ATP concentration for LATS1(h) and at 155  $\mu$ M ATP concentration for LATS2(h).

![](_page_41_Figure_0.jpeg)

Figure S41. Estimated IC<sub>50</sub> values of **51** measured at 90  $\mu$ M ATP concentration for LATS1(h) and at 155  $\mu$ M ATP concentration for LATS2(h).

# 4. Solubility<sup>3</sup>

3 mg of each compound was weighed into 1.5 mL Eppi tubes. 700  $\mu$ L of D<sub>2</sub>O (deuterium oxide) was then added and the sample was sonicated for 5 min and was subjected to shaking on a high-speed vibrating mixer for 24 h at rt. After, sample was centrifuged at 10,000 rpm for 5 min. For analysis, the supernatant was filtered using 0.45  $\mu$ m PVDF syringe filter. For the quantitation, DMSO (dimethyl sulfoxide) was used as an internal standard. The concentration of each compound in D<sub>2</sub>O was calculated based on the integration ratio of the compound signal to the internal standard DMSO signal (2.71 ppm, 6H) (n=3).

5. Metabolic stability<sup>4,5</sup>

Microsomes diluted with Potassium phosphate buffer were incubated at 37°C for 5 minutes, then the tested compound and NADPH were added and reacted at 37°C for 30 minutes (test compound final conc.: 1 $\mu$ M, microsome final conc.: 0.5 mg/mL). To terminate the reaction, cold acetonitrile containing an internal standard was added and then treated with deproteinization. After centrifugation (4,000 rpm, 4°C, 15 min), the supernatant was analyzed by LC-MS/MS (Mass spectrometry (Agilent 6460) with HPLC (Agilent 1260)).

| Compound  | Mouse (%)        | Human (%)        |
|-----------|------------------|------------------|
| 1 (Truli) | $0.18\pm0.03$    | $2.68\pm0.46$    |
| 5k        | $13.81 \pm 0.55$ | $43.10\pm1.10$   |
| 51        | $0.69 \pm 0.17$  | $34.92 \pm 1.31$ |

Table S4. Liver microsomal phase I stability (% of remaining after 30 min) (mean  $\pm$  SD, n=3)

#### 6. Mouse pharmacokinetics<sup>6</sup>

Pharmacokinetic profiles of **5k** and **5l** were obtained using male mice. Blood was centrifuged to separate plasma, and 9x the volume of cold acetonitrile containing an internal standard is added, followed by deproteinization. After centrifugation (13,000 rpm, 4 °C, 10 min), the supernatant was analyzed by LC-MS/MS (Mass spectrometry (Agilent 6460) with HPLC (Agilent 1260)). For the calibration curve of the compound, a 10x higher concentration solution (0.5-8000 ng/mL) was prepared by adding it to blank plasma, and it was further prepared in the same manner as the tested compound.

![](_page_42_Figure_5.jpeg)

Figure S42. Plasma concentration-time profiles of **5k** in male mice (n=3).

| Parameter                    | IV, 5 mg/kg     | IP, 10 mg/kg     | PO, 20 mg/kg     |
|------------------------------|-----------------|------------------|------------------|
| T <sub>max</sub> (h)         | NA              | $0.5\pm0$        | $0.42 \pm 0.14$  |
| C <sub>max</sub> (µg/mL)     | NA              | $9.51\pm2.03$    | $13.32 \pm 2.82$ |
| T <sub>1/2</sub> (h)         | $2.86 \pm 1.88$ | $5.24\pm2.45$    | $4.25\pm3.57$    |
| $AUC_{last} (\mu g * h/mL)$  | $4.34\pm2.17$   | $11.42 \pm 3.28$ | $25.71 \pm 8.01$ |
| $AUC_{\infty}(\mu g^{h/mL})$ | $4.34\pm2.16$   | $11.46 \pm 3.25$ | $25.75 \pm 7.97$ |
| CL (L/h/kg)                  | $1.41\pm0.82$   | NA               | NA               |
| V <sub>ss</sub> (L/kg)       | 3 ± 4.42        | NA               | NA               |
| MRT <sub>last</sub> (h)      | $1.43 \pm 1.65$ | $1.14\pm0.15$    | $1.74\pm0.99$    |
| $MRT_{\infty}(h)$            | $1.49 \pm 1.72$ | $1.27\pm0.15$    | $1.81\pm0.94$    |
| $F_t$ (%)                    | NA              | 131.71           | 148.23           |

Table S5. Pharmacokinetic parameters of **5k** in male mice.

NA, not applicable; ND, not detected; NC, not calculated

![](_page_43_Figure_3.jpeg)

Figure S43. Plasma concentration-time profiles of 51 in male mice (n=3).

| Parameter                | IV, 5 mg/kg     | IP, 10 mg/kg  | PO, 20 mg/kg  |
|--------------------------|-----------------|---------------|---------------|
| T <sub>max</sub> (h)     | NA              | $0.08\pm0.00$ | $0.25\pm0.00$ |
| C <sub>max</sub> (µg/mL) | NA              | $7.30\pm1.88$ | $5.74\pm0.92$ |
| T <sub>1/2</sub> (h)     | $6.56 \pm 3.32$ | $5.59\pm0.88$ | $3.46\pm0.33$ |

Table S6. Pharmacokinetic parameters of **5**l in male mice.

| AUC <sub>last</sub> (µg*h/mL) | $2.94\pm0.18$   | $4.37\pm0.72$   | $5.15\pm0.59$ |
|-------------------------------|-----------------|-----------------|---------------|
| $AUC_{\infty}(\mu g^{h/mL})$  | $2.96\pm0.15$   | $4.39\pm0.71$   | $5.16\pm0.59$ |
| CL (L/h/kg)                   | $1.69\pm0.09$   | NA              | NA            |
| V <sub>ss</sub> (L/kg)        | $1.80 \pm 1.32$ | NA              | NA            |
| MRT <sub>last</sub> (h)       | $0.71 \pm 0.25$ | $0.97\pm0.12$   | $1.50\pm0.10$ |
| $MRT_{\infty}(h)$             | $1.04\pm0.71$   | $1.14 \pm 0.21$ | $1.56\pm0.10$ |
| F <sub>t</sub> (%)            | NA              | 74.36           | 43.89         |

NA, not applicable; ND, not detected; NC, not calculated

## 7. Kinase screening results

A set of 468 kinase inhibitory tests was performed on the compound **51** at a concentration of 100 nM by using the scanMAX kinase assay panel of KINOMEscan. In this study, the kinase binding maps of **51** demonstrated the strength and relative specificity of kinase-binding interactions. Results are reported as the percentage of the control (%Ctrl), where %Ctrl = [(positive control signal - test compound signal)/(positive control signal - negative control signal)]\*100. Dimethyl sulfoxide (DMSO) was used as the negative control. Lower values of %Ctrl indicate a stronger interaction between **51** and kinases. TREE*spot* was generated online using the TREE*spot*<sup>TM</sup> software tool. A large red circle indicates higher-affinity binding of numerous kinases.

Table S7. Target enzymes binding more potently than LATS1 and LATS2. Of 468 kinases in a binding panel, these enzymes bound 100 nM **51** compound relatively more strongly than LATS1 or LATS2 did.

| KINOMEscan Gene Symbol | %Ctrl @ 100 nM* |
|------------------------|-----------------|
| LATS1                  | 92              |
| LATS2                  | 27              |
| DMPK                   | 6.5             |
| FLT3(D835V)            | 16              |
| YSK4                   | 7.1             |

\*Data shown are the relative binding (% to control) of each kinase to its respective ligand with no competitor added in the presence of 100 nM **5**l.

Selectivity Score (S-scores)

Selectivity Score or S-score is a quantitative measure of compound selectivity. It is calculated by dividing the number of kinases that compounds bind to by the total number of distinct kinases tested, excluding mutant kinases.

S = Number of hits / Number of assays

This value can be calculated using %Ctrl as a potency threshold (below) and provides a quant itative method of describing compound selectivity to facilitate comparison of different compounds.

S(35) = (number of non-mutant kinases with %Ctrl <35)/(number of non-mutant kinases tested)

S(10) = (number of non-mutant kinases with %Ctrl <10)/(number of non-mutant kinases tested)

S(1) = (number of non-mutant kinases with %Ctrl <1)/(number of non-mutant kinases tested)

| Compound | Selectivity |             | Number of non- | Screening conc. | Selectivity |
|----------|-------------|-------------|----------------|-----------------|-------------|
| name     | score type  | Number hits | mutant kinases | (nM)            | score       |
| 51       | S(35)       | 3           | 403            | 100             | 0.007       |
| 51       | S(10)       | 2           | 403            | 100             | 0.005       |
| 51       | S(1)        | 0           | 403            | 100             | 0           |

Table S8. S-score values

![](_page_46_Figure_0.jpeg)

Figure S44. The TREEspot compound profile of **5**l.

## 8. KRICT-AI assisted prediction of metabolic stability

KRICT-AI (pre-trained machine learning model, PredMS)<sup>7</sup> platform was accessed online via <u>https://predms.netlify.app/</u> and used to get predicted values of metabolic stabilities of the analyzed compounds **1**, **5a-m** and **6a-e**. PredMS predicts metabolic stability for a given compound as stable ( $\geq$  50% remaining at 30 min) or unstable (< 50% remaining at 30 min) in human liver microsomes. The chemical structures of the compounds were presented in the simplified molecular-input line-entry system (SMILES) format and were further submitted for evaluation.

| Compound          | Metabolic stability     |  |
|-------------------|-------------------------|--|
| 1 (Truli)         | Human: Unstable (0.457) |  |
| 2 (NIBR-LTSi)     | Human: Stable (0.646)   |  |
| <b>3</b> (GA-017) | Human: Stable (0.799)   |  |
| 5a                | Human: Unstable (0.363) |  |
| 5b                | Human: Unstable (0.428) |  |
| 5c                | Human: Unstable (0.428) |  |
| 5d                | Human: Unstable (0.403) |  |
| 5e                | Human: Unstable (0.480) |  |
| 5f                | Human: Unstable (0.489) |  |
| 5g                | Human: Unstable (0.282) |  |
| 5h                | Human: Unstable (0.301) |  |
| 5i                | Human: Unstable (0.292) |  |
| 5j                | Human: Unstable (0.277) |  |
| 5k                | Human: Stable (0.592)   |  |
| 51                | Human: Stable (0.561)   |  |
| 5m                | Human: Stable (0.719)   |  |
| 6a                | Human: Stable (0.792)   |  |
| 6b                | Human: Stable (0.829)   |  |
| 60                | Human: Stable (0.601)   |  |

Table S9. KRICT-AI assisted prediction data

| 6d | Human: Stable (0.619) |
|----|-----------------------|
| 6e | Human: Stable (0.619) |

9. Molecular Docking simulation results<sup>8,9</sup>

The molecular docking was performed on the HyperLab (<u>https://www.hyperlab.hits.ai/en</u>) online platform with the homology model created from the crystal structure of kinase ROCK1 bound to azaindole thiazole inhibitor<sup>10</sup> as there is no known crystal structure of the LATS kinases. The X-ray crystal structure of ROCK1 kinase complex (PDB ID: 5KKS) was downloaded from the protein data bank (www.rcsb.org). The 2D structure of the analyzed compounds **1**, **5a-m** and **6a-e** were drawn using ChemDraw software. Binding energies were automatically calculated after registering the molecular structures of the analyzed compounds. It uses artificial intelligence to predict drug-protein binding energy. The stronger the prediction value (binding score), the higher the probability of showing activity. A molecule with a binding score of -10 kcal/mol is more likely to be active compared to a molecule with -8 kcal/mol.

|               | <b>Backbone interactions</b>           | Side chain interactions                |
|---------------|----------------------------------------|----------------------------------------|
| Compound name | (AA residue, type of interaction, bond | (AA residue, type of interaction, bond |
|               | length)                                | length)                                |
| 1 (Truli)     |                                        | Val137, vdw, 3.48Å                     |
|               |                                        | Ala103, vdw, 3.44Å                     |
|               | Met156, hbond, vdw, 3.05Å              | Lys105, vdw, 3.38Å                     |
|               | Glu154, hbond, vdw, 2.8Å               | Asp216, vdw, 3.25Å                     |
|               | Ile82, vdw, 3.29Å                      | Val90, vdw, 3.54Å                      |
|               |                                        | Leu205, vdw, 3.27Å                     |
|               |                                        | Leu205, vdw, 3.48Å                     |
|               | Asp216, hbond, vdw, 2.95Å              | Ala103, vdw, 3.43Å                     |
| 5a            |                                        | Val137, vdw, 3.47Å                     |
|               |                                        | Ala215, vdw, 3.49Å                     |
|               |                                        | Lys105, vdw, 3.58Å                     |
|               |                                        | Lys105, weak hbond, 3.67Å              |
| 5b            |                                        | Ala103, vdw, 3.4Å                      |
|               |                                        | Ala215, vdw, 3.27Å                     |
|               | Asp216, hbond, vdw, 2.95Å              | Ala215, vdw, 3.4Å                      |
|               |                                        | Lys105, vdw, 3.49Å                     |
|               |                                        | Lys105, weak hbond, 3.64Å              |
| 5c            |                                        | Ala103, vdw, 3.24Å                     |
|               | Glu154, hbond, vdw, 3.02Å              | Leu205, vdw, 3.33Å                     |
|               | Met156, vdw, 3.31Å                     | Val137, vdw, 3.49Å                     |
|               | Asp202, vdw, 3.32Å                     | Asp216, vdw, 3.23Å                     |
|               |                                        | Lys105, vdw, 3.31Å                     |

Table S10. Summary of interaction types in protein homology modeling

| 5d         Asp216, weak hbond, 3.28Å<br>Asp216, vdw, 3.24Å         Lys105, vdw, 3.5Å<br>Met153, vdw, 3.5Å           5e         Met156, hbond, vdw, 2.99Å         Val90, vdw, 3.25Å           5e         Met156, hbond, vdw, 2.99Å         Val90, vdw, 3.25Å           5f         Gly83, vdw, 3.48Å         Ala103, vdw, 3.48Å           6         Asp216, vdw, weak hbond, 2.99Å         Ala103, vdw, 3.4Å           5f         Gly83, vdw, 3.48Å         Val90, vdw, 3.44Å           5g         Phe87, hbond, vdw, 2.9Å         Val90, vdw, 3.4Å           5g         Phe87, hbond, vdw, 2.9Å         Val90, vdw, 3.44Å           5g         Phe87, hbond, vdw, 2.9Å         Val90, vdw, 3.49Å           5g         Arg84, vdw, 3.24Å         Asp216, vdw, 3.49Å           5g         Arg84, vdw, 2.9TÅ         Phe368, vdw, 3.49Å           11682, vdw, 2.9TÅ         Phe368, vdw, 3.49Å           11682, vdw, 2.9A         Phe368, vdw, 3.44Å           5i         Asp216, vdw, vas4 hbond, 3.12Å         Met153, vdw, 3.44Å           5i         Asp216, vdw, 3.36Å         Met153, vdw, 3.44Å           5i         Glu154, hbond, vdw, 3.15Å         Met155, vdw, 3.29Å           5i         Glu154, hbond, vdw, 2.96Å         Val90, vdw, 3.47Å           11682, vdw, 3.29Å         Met156, hbond, vdw, 3.15Å         Met15                                                                        |            |                                | Val90, vdw, 3.45Å             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------|-------------------------------|
| 5d         Asp216, wak noond, 3.28A<br>Asp216, vdw, 3.24Å         Met153, vdw, 3.54Å<br>Leu205, vdw, 3.41Å           5e         Met156, hbond, vdw, 2.99Å         Val90, vdw, 3.25Å<br>Leu205, vdw, 3.4Å           5f         Asp216, vdw, weak hbond, 2.99Å         Val90, vdw, 3.4Å           5f         Asp216, vdw, weak hbond, 2.99Å         Ala103, vdw, 3.4Å           5g         Phe87, hbond, vdw, 2.9Å         Val90, vdw, 3.4Å           5g         Argg4, vdw, 3.2Å         Asp216, vdw, 3.9Å           5h         Ite82, vdw, 2.9Å         Val90, vdw, 3.4Å           7         Phe368, vdw, 3.49Å         Val90, vdw, 3.4Å           7         Ite82, vdw, 3.2Å         Phe368, vdw, 3.47Å           7         Phe368, vdw, 3.4Å         Val90, vdw, 3.4Å           7         Phe368, vdw, 3.4Å         Val90, vdw, 3.                                                                                       |            |                                | Lys105, vdw, 3.5Å             |
| Asp216, vdw, 3.24A         Leu205, vdw, 3.41Å           Se         Met156, hbond, vdw, 2.99Å         Val90, vdw, 3.25Å           Se         Met156, hbond, vdw, 2.99Å         Val90, vdw, 3.4Å           Ala103, vdw, 3.4Å         Ala103, vdw, 3.4Å           Ala103, vdw, 3.4Å         Ala103, vdw, 3.4Å           Sf         Gly83, vdw, 3.48Å         Val90, vdw, 3.4AÅ           Sg         Phe87, hbond, vdw, 2.9Å         Val90, vdw, 3.4AÅ           Sg         Arg84, vdw, 3.24Å         Asp216, vdw, 2.95Å           Arg84, vdw, 2.9A         Phe368, vdw, 3.49Å           He82, vdw, 2.76Å         Phe368, vdw, 3.44Å           Val90, vdw, 3.45Å         Val90, vdw, 3.45Å           Si         Asp216, vdw, weak hbond, 3.12Å         Asp150, vdw, 3.44Å           Si         Asp216, vdw, 3.45Å         Val90, vdw, 3.45Å           Si         Asp216, vdw, 3.45Å         Val90, vdw, 3.45Å           Si         Glu154, hbond, vdw, 3.15Å         Met153, vdw, 3.44Å           Si         Glu154, hbond, vdw, 2.81Å         Asp216, vdw, 3.44Å                                                                                                                       | 5d         | Asp216, weak hoond, 3.28A      | Met153, vdw, 3.54Å            |
| 5e         Met156, hbond, vdw, 2.99Å         Val90, vdw, 3.25Å           5e         Met156, hbond, vdw, 2.99Å         Val90, vdw, 3.23Å           5f         Asp216, vdw, weak hbond, 2.99Å         Ala103, vdw, 3.4Å           5f         Gily83, vdw, 3.48Å         Val90, vdw, 3.24Å           6jlw8, vdw, 3.48Å         Val90, vdw, 3.4Å           6jlw8, vdw, 3.45Å         Val90, vdw, 3.4Å           5g         Phe87, hbond, vdw, 2.9Å         Val90, vdw, 3.4Å           5g         Phe87, hbond, vdw, 2.9Å         Val90, vdw, 3.4Å           5g         Phe87, udw, 3.2Å         Asp216, vdw, 3.4Å           Arg84, vdw, 2.9Å         Val90, vdw, 3.4Å           Arg84, vdw, 2.9Å         Asp216, vdw, 3.4Å           Arg84, vdw, 2.97Å         Phe368, vdw, 3.49Å           Ile82, vdw, 2.76Å         Phe368, vdw, 3.4Å           Met153, vdw, 3.4Å         Val90, vdw, 3.4Å           5i         Asp216, vdw, was libond, 3.12Å         Asp150, vdw, 3.4Å           Met153, vdw, 3.4Å         Val90, vdw, 3.4Å         Val90, vdw, 3.4Å           5j         -         Phe368, vdw, 3.4Å           5j         -         Phe368, vdw, 3.4Å           6jlu154, hbond, vdw, 2.96Å         Val90, vdw, 3.4Å           5j         -         Phe368, vdw, 3.4Å                                                                                                                                    |            | Asp216, vdw, 3.24A             | Leu205, vdw, 3.41Å            |
| Se         Met156, hbond, vdw, 2.99Å         Val90, vdw, 3.32Å           Leu205, vdw, 3.4Å         Leu205, vdw, 3.4Å           Ala103, vdw, 3.36Å         Ala103, vdw, 3.4Å           Sf         Asp216, vdw, weak hbond, 2.99Å         Ala215, vdw, 3.4Å           Gilv83, vdw, 3.48Å         Val90, vdw, 3.42Å           Gilv80, vdw, 3.45Å         Val90, vdw, 3.42Å           Sg         Phe87, hbond, vdw, 2.9Å         Val90, vdw, 3.44Å           Sg         Oly88, hbond, 3.19Å         Val90, vdw, 3.44Å           Arg84, vdw, 2.9A         Lys105, vdw, 3.44Å           Sh         Ile82, vdw, 3.24Å         Asp216, vdw, 2.95Å           Arg84, vdw, 2.97Å         Phe368, vdw, 3.49Å           Ile82, vdw, 3.2A         Phe368, vdw, 3.49Å           Ile82, vdw, 3.2A         Phe368, vdw, 3.44Å           Val90, vdw, 3.43Å         Val90, vdw, 3.44Å           Si         Asp20c, vdw, 3.36Å         Met153, vdw, 3.44Å           Si         Asp216, vdw, weak hbond, 3.12Å         Met153, vdw, 3.44Å           Val90, vdw, 3.43Å         Phe368, vdw, 3.44Å           Si         -         Phe368, vdw, 3.44Å           Si         Glu154, hbond, vdw, 3.15Å         Asp10, vdw, 3.43Å           Glu154, hbond, vdw, 2.96Å         Val90, vdw, 3.44Å           Si                                                                                                                        |            |                                | Val90, vdw, 3.25Å             |
| Je         Leu205, vdw, 3.4Å           Ala103, vdw, 3.4Å         Ala103, vdw, 3.4Å           Asp216, vdw, weak hbond, 2.99Å         Ala103, vdw, 3.4Å           Sf         Gly83, vdw, 3.48Å         Val90, vdw, 3.24Å           Gly83, vdw, 3.48Å         Val90, vdw, 3.49Å         Lys105, vdw, 3.49Å           Sg         Phe87, hbond, vdw, 2.9Å         Val90, vdw, 3.49Å           Sg         Gly88, hbond, 3.19Å         Asp216, vdw, 2.95Å           Arg84, vdw, 3.24Å         Asp216, vdw, 2.95Å           Arg84, vdw, 2.97Å         Phe368, vdw, 3.49Å           Phe368, vdw, 3.49Å         Val90, vdw, 3.44Å           Sh         Hie82, vdw, 2.76Å           Phe368, vdw, 3.44Å         Val90, vdw, 3.44Å           Val90, vdw, 3.45Å         Val90, vdw, 3.44Å           Si         Asp216, vdw, veak hbond, 3.12Å         Asp150, vdw, 3.44Å           Si         Asp216, vdw, 2.99Å         Phe368, vdw, 3.44Å           Si         Glu154, hbond, vdw, 3.15Å         Asp150, vdw, 3.19Å           Si         Glu154, hbond, vdw, 2.96Å         Val90, vdw, 3.47Å           Ala103, vdw, 3.47Å         Asp216, vdw, 3.24Å           Val90, vdw, 3.5Å         Val90, vdw, 3.5Å           Si         Glu154, hbond, vdw, 2.81Å         Ala103, vdw, 3.47Å           He82, vdw                                                                                                               | 50         | Met156, hbond, vdw, 2.99Å      | Val90, vdw, 3.32Å             |
| Ala103, vdw, 3.36Å           Asp216, vdw, weak hbond, 2.99Å         Ala103, vdw, 3.4Å           Gly83, vdw, 3.48Å         Ala215, vdw, 3.24Å           Gly89, vdw, 3.45Å         Val90, vdw, 3.42Å           Sg         Phe87, hbond, vdw, 2.9Å         Val90, vdw, 3.44Å           Sg         Phe87, hbond, vdw, 2.9Å         Val90, vdw, 3.44Å           Sg         Phe87, hbond, vdw, 2.9Å         Val90, vdw, 3.41Å           Sh         Arg84, vdw, 2.97Å         Asp216, vdw, 2.95Å           Arg84, vdw, 2.97Å         Phe368, vdw, 3.49Å           Ile82, vdw, 2.76Å         Phe368, vdw, 3.47Å           Bile82, vdw, 3.2Å         Met153, vdw, 3.4Å           Val90, vdw, 3.45Å         Val90, vdw, 3.45Å           Si         Asp216, vdw, weak hbond, 3.12Å         Asp16, vdw, 3.44Å           Si         Asp216, vdw, 3.03Å         Phe368, vdw, 3.44Å           Si         Asp216, vdw, 3.03Å         Phe368, vdw, 3.48Å           Ile82, vdw, 2.99Å         Phe368, vdw, 3.44Å           Si         Glu154, hbond, vdw, 3.15Å         Asp216, vdw, 3.49Å           Ile82, vdw, 3.23Å         Phe368, vdw, 3.48Å         Leu205, vdw, 3.27Å           Si         Glu154, hbond, vdw, 2.96Å         Val90, vdw, 3.48Å         Leu205, vdw, 3.48Å           Ile82, vdw, 3.23Å         Leu205,                                                                                               | 50         |                                | Leu205, vdw, 3.4Å             |
| Sf         Ala103, vdw, 3.4Å           Sf         Asp216, vdw, weak hbond, 2.99Å         Ala103, vdw, 3.4Å           Gly83, vdw, 3.4Å         Ala215, vdw, 3.2Å           Gly89, vdw, 3.45Å         Val90, vdw, 3.42Å           Sg         Phe87, hbond, vdw, 2.9Å         Val90, vdw, 3.4Å           Gly88, hbond, 3.19Å         Val90, vdw, 3.49Å           Lys105, vdw, 3.18Å         Val90, vdw, 3.44Å           Arg84, vdw, 2.9A         Asp216, vdw, 2.95Å           Arg84, vdw, 2.97Å         Phe368, vdw, 3.49Å           He82, vdw, 2.97Å         Phe368, vdw, 3.44Å           Val90, vdw, 3.44Å         Val90, vdw, 3.44Å           Val90, vdw, 3.44Å         Phe368, vdw, 3.49Å           He82, vdw, 2.97Å         Phe368, vdw, 3.44Å           Val90, vdw, 3.44Å         Val90, vdw, 3.44Å           Si         Asp202, vdw, 3.36Å         Met153, vdw, 3.44Å           Si         Asp202, vdw, 2.93Å         Phe368, vdw, 3.44Å           Val90, vdw, 3.44Å         Val90, vdw, 3.44Å           Si         Asp216, vdw, vack hbond, 3.12Å         Asp150, vdw, 3.44Å           Met153, vdw, 3.44Å         Val90, vdw, 3.44Å         Val90, vdw, 3.44Å           Si         Glu154, hbond, vdw, 2.86Å         Val90, vdw, 3.44Å         Val90, vdw, 3.45Å           Leu205, vdw, 3.25Å<                                                                                                      |            |                                | Ala103, vdw, 3.36Å            |
| Sf         Asp216, vdw, weak hbond, 2.99Å<br>Gly83, vdw, 3.48Å         Ala215, vdw, 3.24Å           Si         Gly88, vdw, 3.45Å         Val90, vdw, 3.42Å           Sg         Phe87, hbond, vdw, 2.9Å         Val90, vdw, 3.49Å           Lys105, vdw, 3.18Å         Sg           Arg84, vdw, 2.9Å         Val90, vdw, 3.41Å           Sg         Phe87, hbond, vdw, 2.9Å         Val90, vdw, 3.41Å           Sg         Arg84, vdw, 2.9Å         Asp216, vdw, 2.95Å           Arg84, vdw, 2.97Å         Phe368, vdw, 3.49Å           He82, vdw, 2.76Å         Phe368, vdw, 3.49Å           Be20, vdw, 3.2Å         Met153, vdw, 3.44Å           Val90, vdw, 3.45Å         Val90, vdw, 3.45Å           Si         Asp202, vdw, 3.36Å         Met153, vdw, 3.44Å           Be2, vdw, 3.0Å         Phe368, vdw, 3.44Å           Ile82, vdw, 2.99Å         Phe368, vdw, 3.44Å           Si         Glu154, hbond, vdw, 3.15Å         Asp216, vdw, 3.44Å           Si         Glu154, hbond, vdw, 2.96Å         Val90, vdw, 3.44Å           Si         Glu154, hbond, vdw, 2.96Å         Val90, vdw, 3.44Å           Si         Glu154, hbond, vdw, 2.96Å         Val90, vdw, 3.48Å           Leu205, vdw, 3.23Å         Leu205, vdw, 3.23Å         Met153, vdw, 3.44Å           Leu205, vdw, 3.23Å                                                                                                        |            |                                | Ala103, vdw, 3.4Å             |
| 5f         Gly83, vdw, 3.48Å         Val90, vdw, 3.42Å           Glu89, vdw, 3.45Å         Val90, vdw, 3.49Å           Lysilo5, vdw, 3.49Å         Lysilo5, vdw, 3.48Å           5g         Phe87, hbond, vdw, 2.9Å         Val90, vdw, 3.41Å           Gly88, hbond, 3.19Å         Val90, vdw, 3.41Å           5g         Arg84, vdw, 3.24Å         Asp216, vdw, 2.95Å           Arg84, vdw, 2.97Å         Phe368, vdw, 3.49Å           1682, vdw, 2.76Å         Phe368, vdw, 3.47Å           1882, vdw, 3.2Å         Met153, vdw, 3.4Å           5i         Asp216, vdw, weak hbond, 3.12Å           Asp216, vdw, weak hbond, 3.12Å         Met153, vdw, 3.4Å           5j         -         Phe368, vdw, 3.44Å           Glu154, hbond, vdw, 2.96Å         Val90, vdw, 3.46Å           Val90, vdw, 3.47Å         Asp216, vdw, 3.49Å           Ala103, vdw, 3.48Å         Leu205, vdw, 3.29Å           5l         Glu154, hbond, vdw, 2.81Å         Ala103, vdw, 3.48Å           Leu205, vdw, 3.23Å         Leu205, vdw, 3.29Å           Met1                                                                                                                                                  |            | Asp216, vdw, weak hbond, 2.99Å | Ala215, vdw, 3.24Å            |
| Glu89, vdw, 3.45Å         Val90, vdw, 3.49Å           5g         Phe87, hbond, vdw, 2.9Å         Lys105, vdw, 3.18Å           5g         Phe87, hbond, vdw, 2.9Å         Val90, vdw, 3.41Å           5g         Arg84, vdw, 3.24Å         Asp216, vdw, 2.95Å           Arg84, vdw, 2.97Å         Phe368, vdw, 3.49Å           11e82, vdw, 2.76Å         Phe368, vdw, 3.49Å           11e82, vdw, 3.2Å         Met153, vdw, 3.44Å           5i         Asp202, vdw, 3.36Å         Met153, vdw, 3.44Å           5i         Asp20, vdw, 3.36Å         Met153, vdw, 3.44Å           5j         -         Phe368, vdw, 3.48Å           11e82, vdw, 3.03Å         Phe368, vdw, 3.48Å           11e82, vdw, 2.99Å         Phe368, vdw, 3.48Å           11e82, vdw, 2.99Å         Phe368, vdw, 3.44Å           5j         -         Phe368, vdw, 3.44Å           11e82, vdw, 2.99Å         Phe368, vdw, 3.44Å           11e82, vdw, 2.99Å         Phe368, vdw, 3.44Å           11e82, vdw, 3.15Å         Ala215, vdw, 3.48Å           11e82, vdw, 3.15Å         Ala215, vdw, 3.48Å           11e82, vdw, 3.23Å         Lys00, vdw, 3.48Å           1156, hbond, vdw, 2.81Å         Ala103, vdw, 3.48Å           1182, vdw, 3.23Å         Leu205, vdw, 3.29Å           1182, vdw,                                                                                                                                 | 5f         | Gly83, vdw, 3.48Å              | Val90, vdw, 3.42Å             |
| Image: Sig         Lys105, vdw, 3.18Å           5g         Phe87, hbond, vdw, 2.9Å         Val90, vdw, 3.41Å           Gly88, hbond, 3.19Å         Arg84, vdw, 3.24Å         Asp216, vdw, 2.95Å           Arg84, vdw, 2.97Å         Phe368, vdw, 3.49Å           Phe82, vdw, 2.76Å         Phe368, vdw, 3.49Å           Ile82, vdw, 2.76Å         Phe368, vdw, 3.44Å           Val90, vdw, 3.45Å         Val90, vdw, 3.45Å           Si         Asp202, vdw, 3.36Å         Met153, vdw, 3.41Å           Asp216, vdw, weak hbond, 3.12Å         Asp150, vdw, 3.44Å           Ile82, vdw, 2.99Å         Phe368, vdw, 3.44Å           Si         Asp216, vdw, weak hbond, 3.12Å         Asp150, vdw, 3.44Å           Ile82, vdw, 2.99Å         Phe368, vdw, 3.44Å           Si         Glu154, hbond, vdw, 2.99Å         Phe368, vdw, 3.44Å           Si         Glu154, hbond, vdw, 2.96Å         Val90, vdw, 3.49Å           Ile82, vdw, 3.29Å         Asp216, vdw, 3.49Å         Ala215, vdw, 3.49Å           Ile82, vdw, 3.28Å         Ala215, vdw, 3.29Å         Ala215, vdw, 3.29Å           Si         Glu154, hbond, vdw, 2.81Å         Leu205, vdw, 3.29Å           Ile82, vdw, 3.28Å         Asp216, vdw, 3.29Å         Asp216, vdw, 3.29Å           Ile82, vdw, 3.28Å         Asp216, vdw, 3.25Å         Asp216, vdw, 3.25Å </th <th></th> <td>Glu89, vdw, 3.45Å</td> <td>Val90, vdw, 3.49Å</td> |            | Glu89, vdw, 3.45Å              | Val90, vdw, 3.49Å             |
| 5g         Phe87, hbond, vdw, 2.9Å<br>Gly88, hbond, 3.19Å         Val90, vdw, 3.41Å           arg84, vdw, 3.24Å<br>Arg84, vdw, 2.97Å         Asp216, vdw, 2.95Å           b         Arg84, vdw, 2.97Å         Phe368, vdw, 3.49Å           fle82, vdw, 2.76Å         Phe368, vdw, 3.49Å           fle82, vdw, 3.2Å         Met153, vdw, 3.4Å           fle82, vdw, 3.0Å         Phe368, vdw, 3.4Å           fle82, vdw, 3.03Å         Phe368, vdw, 3.4Å           fle82, vdw, 2.99Å         Val90, vdw, 3.27Å           fle82, vdw, 3.15Å         Val90, vdw, 3.47Å           fle82, vdw, 3.28Å         Val90, vdw, 3.49Å           fle82, vdw, 3.28Å         Leu205, vdw, 3.29Å           fle82, vdw, 3.28Å         Leu205, vdw, 3.29Å           fle82, vdw, 3.28Å         Asp216, vdw, 3.25Å                                                                                                        |            |                                | Lys105, vdw, 3.18Å            |
| 3g         Gly88, hbond, 3.19Å           Arg84, vdw, 3.24Å         Asp216, vdw, 2.95Å           Arg84, vdw, 2.97Å         Asp216, vdw, 3.49Å           Jie82, vdw, 2.76Å         Phe368, vdw, 3.49Å           Ile82, vdw, 3.2Å         Phe368, vdw, 3.49Å           Met153, vdw, 3.4Å         Val90, vdw, 3.45Å           Asp202, vdw, 3.2Å         Met153, vdw, 3.4Å           Met153, vdw, 3.4Å         Val90, vdw, 3.45Å           Asp216, vdw, weak hbond, 3.12Å         Asp150, vdw, 3.44Å           Si         Ile82, vdw, 2.99Å         Phe368, vdw, 3.44Å           Si         Glu154, hbond, vdw, 2.99Å         Phe368, vdw, 3.44Å           Si         Glu154, hbond, vdw, 3.15Å         Val90, vdw, 3.49Å           Met156, hbond, vdw, 2.96Å         Val90, vdw, 3.49Å           Si         Glu154, hbond, vdw, 2.96Å         Val90, vdw, 3.49Å           Met156, hbond, vdw, 2.96Å         Val90, vdw, 3.48Å           Leu205, vdw, 3.29Å         Leu205, vdw, 3.29Å           Met156, hbond, vdw, 2.81Å         Leu205, vdw, 3.29Å           Met156, hbond, vdw, 3.25Å         Met153, vdw, 3.25Å           Si         Glu154, vdw, weak hbond, 2.8Å         Met153, vdw, 3.25Å           Met153, vdw, 3.25Å         Met153, vdw, 3.25Å           Si         Glu154, vdw, veak hbond, 2.8Å                                                                                                 | 5α         | Phe87, hbond, vdw, 2.9Å        | Val90, vdw, 3.41Å             |
| Sh         Arg84, vdw, 3.24Å<br>Arg84, vdw, 2.97Å<br>Ile82, vdw, 2.76Å<br>Ile82, vdw, 3.2Å         Asp216, vdw, 2.95Å<br>Asp216, vdw, 3.49Å           5h         Ile82, vdw, 2.76Å<br>Ile82, vdw, 3.2Å         Phe368, vdw, 3.49Å           5i         Asp202, vdw, 3.36Å         Met153, vdw, 3.4Å           5i         Asp216, vdw, weak hbond, 3.12Å         Asp150, vdw, 3.4Å           5i         Asp216, vdw, weak hbond, 3.12Å         Asp150, vdw, 3.4Å           5j         -         Val90, vdw, 3.4Å           6lu154, hbond, vdw, 2.99Å         Phe368, vdw, 3.44Å           5j         -         Val90, vdw, 3.4Å           5k         Glu154, hbond, vdw, 2.96Å         Val90, vdw, 3.4Å           5k         Glu154, hbond, vdw, 2.96Å         Val90, vdw, 3.4Å           5l         Glu154, hbond, vdw, 2.81Å         Ala103, vdw, 3.4Å           1le82, vdw, 3.23Å         Leu205, vdw, 3.25Å           5l         Glu154, www.ak hbond, 2.8Å         Asp216, vdw, 3.25Å           5l         Glu154, hbond, vdw, 2.8Å         Leu205, vdw, 3.25Å           5a         Glu154, vdw, vacak hbond, 2.8Å         Asp216, vdw, 3.25Å           5a </th <th></th> <th>Gly88, hbond, 3.19Å</th> <th></th>                                     |            | Gly88, hbond, 3.19Å            |                               |
| Sh         Arg84, vdw, 2.97Å<br>IIe82, vdw, 2.76Å<br>IIe82, vdw, 3.2Å         Asp216, vdw, 3.49Å<br>Phe368, vdw, 3.49Å           5h         IIe82, vdw, 2.76Å<br>IIe82, vdw, 3.2Å         Phe368, vdw, 3.49Å           5i         Asp202, vdw, 3.36Å         Met153, vdw, 3.4Å           5i         Asp216, vdw, weak hbond, 3.12Å         Asp150, vdw, 3.4Å           5i         Asp216, vdw, weak hbond, 3.12Å         Asp150, vdw, 3.4Å           5j         -         Val90, vdw, 3.4Å           5j         -         Phe368, vdw, 3.4Å           5k         Glu154, hbond, vdw, 2.99Å         Phe368, vdw, 3.4Å           5k         Glu154, hbond, vdw, 3.15Å         Asp216, vdw, 3.4AÅ           5k         Glu154, hbond, vdw, 2.96Å         Val90, vdw, 3.4AÅ           5k         Glu154, hbond, vdw, 2.96Å         Val90, vdw, 3.4AÅ           5l         Glu154, hbond, vdw, 2.81Å         Ala103, vdw, 3.4AÅ           5l         Glu154, hbond, vdw, 2.81Å         Leu205, vdw, 3.2AÅ           5l         Glu154, hbond, vdw, 2.81Å         Leu205, vdw, 3.2AÅ           5l         Glu154, hbond, vdw, 2.8AÅ         Asp216, vdw, 3.2AÅ           5l         Glu154, hbond, vdw, 2.8AÅ         Asp216, vdw, 3.2AÅ           5l         Glu154, hbond, vdw, 2.8AÅ         Asp216, vdw, 3.2AÅ           5le82, vdw, 3.2A                                                                  |            | A                              | Asp216, vdw, 2.95Å            |
| Sh         Alges, vdw, 2.97A         Phe368, vdw, 3.49Å           Ile82, vdw, 2.76Å         Phe368, vdw, 3.47Å           Ile82, vdw, 3.2Å         Met153, vdw, 3.4Å           Val90, vdw, 3.4Å         Val90, vdw, 3.4Å           Si         Asp202, vdw, 3.36Å         Met153, vdw, 3.4Å           Si         Asp216, vdw, weak hbond, 3.12Å         Asp150, vdw, 3.4Å           Ile82, vdw, 2.99Å         Phe368, vdw, 3.4Å           Si         Ile82, vdw, 2.99Å         Phe368, vdw, 3.4Å           Si         Glu154, hbond, vdw, 3.15Å         Asp216, vdw, 3.44Å           Si         Glu154, hbond, vdw, 3.15Å         Ala215, vdw, 3.49Å           Sk         Glu154, hbond, vdw, 2.96Å         Val90, vdw, 3.44Å           Leu205, vdw, 3.44Å         Leu205, vdw, 3.44Å           Si         Glu154, hbond, vdw, 2.81Å         Leu205, vdw, 3.44Å           Leu205, vdw, 3.29Å         Met153, vdw, 3.47Å           Leu205, vdw, 3.29Å         Met153, vdw, 3.44Å           Si         Glu154, hbond, vdw, 2.81Å         Leu205, vdw, 3.29Å           Met156, hbond, vdw, 3.01Å         Leu205, vdw, 3.29Å           Met156, hbond, vdw, 3.28Å         Asp216, vdw, 3.29Å           Met154, vdw, weak hbond, 2.8Å         Asp216, vdw, 3.27Å           Ile82, vdw, 3.28Å         Asp216, vdw, 3.27Å                                                                                          |            | Arg84, vdw, 3.24A              | Asp216, vdw, 3.49Å            |
| Sh         Itess, vuw, 2.76A         Phe368, vdw, 3.47Å           Ile82, vdw, 3.2Å         Met153, vdw, 3.4Å           Val90, vdw, 3.45Å         Val90, vdw, 3.45Å           Si         Asp202, vdw, 3.36Å         Met153, vdw, 3.4Å           5i         Asp216, vdw, weak hbond, 3.12Å         Asp150, vdw, 3.4Å           Ile82, vdw, 3.03Å         Phe368, vdw, 3.44Å           5j         -         Phe368, vdw, 3.44Å           6lu154, hbond, vdw, 2.99Å         Phe368, vdw, 3.44Å           Met156, hbond, vdw, 3.15Å         Ala215, vdw, 3.44Å           5k         Glu154, hbond, vdw, 2.96Å         Val90, vdw, 3.19Å           Ala103, vdw, 3.48Å         Leu205, vdw, 3.19Å           Leu205, vdw, 3.23Å         Leu205, vdw, 3.29Å           Met156, hbond, vdw, 2.81Å         Leu205, vdw, 3.29Å           Met154, vdw, weak hbond, 2.8Å         Met153, vdw, weak hbond, 3.4Å           Ile82, vdw, 3.28Å         Asp216, vdw, 3.25Å           Met154, hbond, vdw, 2.81Å         Leu205, vdw, 3.29Å           Justof, vdw, 3.28Å         Asp216, vdw, 3                                                                                                                        | 5h         | $H_{1} = 2 $                   | Phe368, vdw, 3.49Å            |
| Intest, vdw, 3.2A         Met153, vdw, 3.4Å           Asp202, vdw, 3.36Å         Met153, vdw, 3.4Å           Si         Asp216, vdw, weak hbond, 3.12Å         Asp150, vdw, 3.19Å           Bit         Asp216, vdw, and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51         | He82, vdw, 2.70A               | Phe368, vdw, 3.47Å            |
| Val90, vdw, 3.45Å           Asp202, vdw, 3.36Å         Met153, vdw, 3.41Å           Asp216, vdw, weak hbond, 3.12Å         Met153, vdw, 3.41Å           Ile82, vdw, 3.03Å         Phe368, vdw, 3.48Å           Ile82, vdw, 2.99Å         Phe368, vdw, 3.48Å           Sj         -         Phe368, vdw, 3.44Å           Sj         -         Phe87, vdw, 3.47Å           Sk         Glu154, hbond, vdw, 3.15Å         Asp216, vdw, 3.49Å           Met156, hbond, vdw, 2.96Å         Val90, vdw, 3.47Å           Sk         Glu154, hbond, vdw, 2.96Å         Val90, vdw, 3.47Å           Sk         Glu154, hbond, vdw, 2.81Å         Ala215, vdw, 3.47Å           Leu205, vdw, 3.29Å         Met153, vdw, 3.47Å           Leu205, vdw, 3.29Å         Ala103, vdw, 3.47Å           Leu205, vdw, 3.29Å         Met153, vdw, 3.47Å           Bile82, vdw, 3.23Å         Leu205, vdw, 3.29Å           Met156, hbond, vdw, 2.81Å         Met153, vdw, 3.44Å           Su         Glu154, vdw, weak hbond, 2.8Å         Met153, vdw, 3.29Å           Met153, vdw, 3.23Å         Met153, vdw, 3.25Å         Met153, vdw, 3.25Å           Glu154, vdw, 3.25Å         Met153, vdw, 3.25Å         Met153, vdw, 3.25Å           Glu154, vdw, 3.25Å         Met153, vdw, 3.25Å         Met153, vdw, 3.4Å                                                                                                           |            | 11662, Vuw, 5.2A               | Met153, vdw, 3.4Å             |
| Si         Asp202, vdw, 3.36Å         Met153, vdw, 3.41Å           Asp216, vdw, weak hbond, 3.12Å         Asp150, vdw, 3.19Å           Ile82, vdw, 3.03Å         Phe368, vdw, 3.48Å           Ile82, vdw, 2.99Å         Phe368, vdw, 3.48Å           5j         -           Si         Glu154, hbond, vdw, 2.99Å           Sk         Glu154, hbond, vdw, 3.15Å           Met155, hbond, vdw, 2.96Å         Ala215, vdw, 3.49Å           Ala103, vdw, 3.49Å         Ala215, vdw, 3.49Å           Sk         Glu154, hbond, vdw, 2.96Å         Val90, vdw, 3.19Å           Met156, hbond, vdw, 2.96Å         Val90, vdw, 3.19Å           Ala103, vdw, 3.48Å         Leu205, vdw, 3.29Å           Met156, hbond, vdw, 2.81Å         Ala103, vdw, 3.47Å           Leu205, vdw, 3.29Å         Leu205, vdw, 3.29Å           Met156, hbond, vdw, 2.81Å         Leu205, vdw, 3.29Å           Met156, hbond, s2.8Å         Asp216, vdw, 3.25Å           Met153, vdw, s2.8Å         Ala215, vdw, 3.25Å           Sm         Glu154, vdw, weak hbond, 2.8Å           Asp216, hbond, 3.25Å         Ala215, vdw, 3.27Å           Leu205, vdw, 3.29Å         Ala215, vdw, 3.27Å           Leu205, vdw, 3.45Å         Leu205, vdw, 3.4Å           Met153, vdw, s.45Å         Leu205, vdw, 3.4Å                                                                                                                         |            |                                | Val90, vdw, 3.45Å             |
| Si         Asp216, vdw, weak hbond, 3.12Å<br>Ile82, vdw, 3.03Å         Asp150, vdw, 3.19Å           Ile82, vdw, 3.03Å         Phe368, vdw, 3.48Å           Ile82, vdw, 2.99Å         Phe368, vdw, 3.44Å           Sj         -         Val90, vdw, 3.27Å           Phe87, vdw, 3.44Å         Asp216, vdw, 3.49Å           Asp216, vdw, vdw, 3.15Å         Asp216, vdw, 3.49Å           Met156, hbond, vdw, 3.15Å         Asp216, vdw, 3.49Å           Sk         Glu154, hbond, vdw, 2.96Å         Val90, vdw, 3.46Å           Val90, vdw, 3.19Å         Ala215, vdw, 3.59Å           Val90, vdw, 3.19Å         Ala103, vdw, 3.48Å           Leu205, vdw, 3.5Å         Val90, vdw, 3.48Å           Ile82, vdw, 3.23Å         Leu205, vdw, 3.29Å           Ile82, vdw, 3.23Å         Leu205, vdw, 3.29Å           Ile82, vdw, 3.23Å         Lys105, vdw, 3.29Å           Ile82, vdw, 3.28Å         Asp216, vdw, 3.25Å           Sm         Glu154, vdw, weak hbond, 2.8Å           Arg84, vdw, 3.06Å         Met153, vdw, weak hbond, 3.4Å           Arg84, vdw, 3.06Å         Ala103, vdw, 3.45Å           Glu154, hbond, vdw, 2.88Å         Leu205, vdw, 3.27Å           Arg84, vdw, 3.06Å         Ala103, vdw, 3.45Å           Glu154, hbond, vdw, 2.88Å         Leu205, vdw, 3.44Å                                                                                                                    |            | Asp202, vdw, 3.36Å             | Met153, vdw, 3.41Å            |
| Ile82, vdw, 3.03Å         Phe368, vdw, 3.48Å           Ile82, vdw, 2.99Å         Phe368, vdw, 3.44Å           5j         -         Val90, vdw, 3.27Å           Phe87, vdw, 3.47Å         Asp216, vdw, 3.49Å           Asp216, vdw, 3.49Å         Ala215, vdw, 3.49Å           Met156, hbond, vdw, 2.96Å         Val90, vdw, 3.49Å           Sk         Glu154, hbond, vdw, 2.96Å         Val90, vdw, 3.49Å           Met156, hbond, vdw, 2.96Å         Val90, vdw, 3.48Å           Leu205, vdw, 3.5Å         Ala103, vdw, 3.48Å           Leu205, vdw, 3.5Å         Ala103, vdw, 3.47Å           Leu205, vdw, 3.23Å         Leu205, vdw, 3.29Å           Met156, hbond, vdw, 2.81Å         Leu205, vdw, 3.29Å           Met154, hbond, vdw, 2.81Å         Leu205, vdw, 3.29Å           Met154, hbond, vdw, 2.81Å         Met153, vdw, 3.44Å           Ile82, vdw, 3.23Å         Lys105, vdw, 3.29Å           Met154, vdw, weak hbond, 2.8Å         Asp216, vdw, 3.25Å           Asp216, hbond, 3.25Å         Met153, vdw, weak hbond, 3.4Å           Ala215, vdw, 3.27Å         Leu205, vdw, 3.27Å           Leu205, vdw, 3.27Å         Ala215, vdw, 3.27Å           Met154, hbond, vdw, 2.88Å         Leu205, vdw, 3.4Å           Met154, hbond, vdw, 2.88Å         Leu205, vdw, 3.4Å           Met156, hbond, vdw, 2                                                                                   | <b>5</b> i | Asp216, vdw, weak hbond, 3.12Å | Asp150, vdw, 3.19Å            |
| Ile82, vdw, 2.99Å         Phe368, vdw, 3.44Å           5j         -         Val90, vdw, 3.27Å           Phe87, vdw, 3.47Å         Phe87, vdw, 3.47Å           Sk         Glu154, hbond, vdw, 3.15Å         Asp216, vdw, 3.49Å           Met156, hbond, vdw, 2.96Å         Val90, vdw, 3.59Å         Val90, vdw, 3.59Å           Sk         Glu154, hbond, vdw, 2.96Å         Val90, vdw, 3.48Å         Leu205, vdw, 3.59Å           Sk         Glu154, hbond, vdw, 2.81Å         Ala103, vdw, 3.48Å         Leu205, vdw, 3.48Å           Iceu205, vdw, 3.29Å         Ala103, vdw, 3.47Å         Leu205, vdw, 3.29Å           Met156, hbond, vdw, 2.81Å         Ala103, vdw, 3.44Å         Leu205, vdw, 3.29Å           Met156, hbond, vdw, 3.01Å         Met153, vdw, 3.29Å         Met153, vdw, 3.29Å           Sm         Glu154, vdw, weak hbond, 2.8Å         Met153, vdw, 3.25Å           Arg84, vdw, 3.27Å         Met153, vdw, 3.27Å         Leu205, vdw, 3.27Å           Leu205, vdw, 3.27Å         Leu205, vdw, 3.44Å         Ala215, vdw, 3.45Å           Glu154, hbond, vdw, 2.88Å         Leu205, vdw, 3.45Å         Leu205, vdw, 3.45Å                                                                                                                                                                                                                                                      |            | Ile82, vdw, 3.03Å              | Phe368, vdw, 3.48Å            |
| 5j         -         Val90, vdw, 3.27Å<br>Phe87, vdw, 3.47Å           Sk         Glu154, hbond, vdw, 3.15Å<br>Met156, hbond, vdw, 2.96Å         Asp216, vdw, 3.49Å           Sk         Glu154, hbond, vdw, 2.96Å         Val90, vdw, 3.59Å           Val90, vdw, 3.46Å         Val90, vdw, 3.46Å           Val90, vdw, 3.46Å         Val90, vdw, 3.46Å           Val90, vdw, 3.46Å         Val90, vdw, 3.48Å           Leu205, vdw, 3.5Å         Ala103, vdw, 3.48Å           Leu205, vdw, 3.5Å         Ala103, vdw, 3.48Å           Leu205, vdw, 3.29Å         Met156, hbond, vdw, 2.81Å           Ile82, vdw, 3.23Å         Lys105, vdw, 3.29Å           Ile82, vdw, 3.23Å         Lys105, vdw, 3.29Å           Ile82, vdw, 3.28Å         Met153, vdw, weak hbond, 3.4Å           Lys105, vdw, 3.25Å         Met153, vdw, 3.27Å           Ile82, vdw, 3.27Å         Leu205, vdw, 3.27Å           Ile82, vdw, 3.27Å         Leu205, vdw, 3.27Å           Ile82, vdw, 3.27Å         Arg84, vdw, 3.06Å           Met153, vdw, weak hbond, 3.4Å         Ala215, vdw, 3.27Å           Arg84, vdw, 3.06Å         Ala103, vdw, 3.45Å           Glu154, hbond, vdw, 2.88Å         Leu205, vdw, 3.31Å           Leu205, vdw, 3.31Å         Leu205, vdw, 3.31Å           Leu205, vdw, 3.31Å         Leu205, vdw, 3.31Å                                                                                          |            | Ile82, vdw, 2.99Å              | Phe368, vdw, 3.44Å            |
| Sk         Phe87, vdw, 3.47Å           Sk         Glu154, hbond, vdw, 3.15Å         Asp216, vdw, 3.49Å           Met156, hbond, vdw, 2.96Å         Ala215, vdw, 3.59Å         Val90, vdw, 3.46Å           Val90, vdw, 3.19Å         Ala103, vdw, 3.48Å         Leu205, vdw, 3.5Å           Sl         Glu154, hbond, vdw, 2.81Å         Ala103, vdw, 3.47Å           Leu205, vdw, 3.5Å         Ala103, vdw, 3.48Å         Leu205, vdw, 3.29Å           Met156, hbond, vdw, 2.81Å         Leu205, vdw, 3.29Å         Met153, vdw, 3.4Å           Ile82, vdw, 3.23Å         Lys105, vdw, 3.29Å         Asp216, vdw, 3.25Å           Sm         Glu154, vdw, weak hbond, 2.8Å         Met153, vdw, weak hbond, 3.4Å           Arg84, vdw, 3.27Å         Leu205, vdw, 3.27Å         Ala215, vdw, 3.27Å           Leu205, vdw, 3.49Å         Met153, vdw, 3.45Å         Leu205, vdw, 3.45Å           Glu154, hbond, vdw, 2.88Å         Leu205, vdw, 3.45Å         Leu205, vdw, 3.45Å           Glu154, hbond, vdw, 2.88Å         Leu205, vdw, 3.31Å         Leu205, vdw, 3.44Å                                                                                                                                                                                                                                                                                                                                | 5j         | _                              | Val90, vdw, 3.27Å             |
| 5k         Glu154, hbond, vdw, 3.15Å         Asp216, vdw, 3.49Å           5k         Met156, hbond, vdw, 2.96Å         Val90, vdw, 3.46Å           Val90, vdw, 3.19Å         Ala103, vdw, 3.48Å           Leu205, vdw, 3.5Å         Leu205, vdw, 3.5Å           5l         Glu154, hbond, vdw, 2.81Å         Ala103, vdw, 3.47Å           Leu205, vdw, 3.29Å         Ala103, vdw, 3.47Å           Leu205, vdw, 3.29Å         Ala103, vdw, 3.47Å           Ile82, vdw, 3.23Å         Leu205, vdw, 3.29Å           Ile82, vdw, 3.23Å         Lys105, vdw, 3.29Å           Ile82, vdw, 3.28Å         Met153, vdw, 3.44Å           Sm         Glu154, vdw, weak hbond, 2.8Å           Arg84, vdw, 3.27Å         Met153, vdw, 3.45Å           Leu205, vdw, 3.27Å         Ala215, vdw, 3.27Å           Leu205, vdw, 3.45Å         Leu205, vdw, 3.45Å           Glu154, hbond, vdw, 2.88Å         Leu205, vdw, 3.45Å           Met156, hbond, vdw, 2.88Å         Leu205, vdw, 3.31Å           Met156, hbond, vdw, 2.96Å         Lys105, vdw, 3.44Å                                                                                                                                                                                                                                                                                                                                                              |            |                                | Phe87, vdw, 3.47Å             |
| 5k         Glu154, hbond, vdw, 3.15Å<br>Met156, hbond, vdw, 2.96Å         Ala215, vdw, 3.59Å<br>Val90, vdw, 3.46Å<br>Val90, vdw, 3.19Å<br>Ala103, vdw, 3.48Å<br>Leu205, vdw, 3.5Å           5l         Glu154, hbond, vdw, 2.81Å<br>Met156, hbond, vdw, 2.81Å<br>Ile82, vdw, 3.23Å<br>Ile82, vdw, 3.23Å<br>Ile82, vdw, 3.28Å         Ala103, vdw, 3.47Å<br>Leu205, vdw, 3.29Å<br>Met153, vdw, 3.4Å<br>Lys105, vdw, 3.29Å<br>Asp216, hbond, 2.8Å<br>Asp216, hbond, 3.25Å           5m         Glu154, vdw, weak hbond, 2.8Å<br>Arg84, vdw, 3.27Å<br>Arg84, vdw, 3.06Å         Met153, vdw, weak hbond, 3.4Å<br>Ala215, vdw, 3.27Å<br>Leu205, vdw, 3.49Å           6a         Glu154, hbond, vdw, 2.88Å<br>Met156, hbond, vdw, 2.96Å         Ala2103, vdw, 3.44Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                | Asp216, vdw, 3.49A            |
| 5k         Met156, hbond, vdw, 2.96Å         Val90, vdw, 3.46Å           St         Met156, hbond, vdw, 2.96Å         Val90, vdw, 3.19Å           Ala103, vdw, 3.48Å         Leu205, vdw, 3.5Å           St         Glu154, hbond, vdw, 2.81Å         Ala103, vdw, 3.47Å           Met156, hbond, vdw, 3.01Å         Leu205, vdw, 3.29Å           Met156, hbond, vdw, 3.23Å         Leu205, vdw, 3.29Å           Ile82, vdw, 3.23Å         Lys105, vdw, 3.29Å           Ile82, vdw, 3.28Å         Met153, vdw, weak hbond, 3.4Å           Lys105, vdw, 3.25Å         Arg84, vdw, 3.27Å           Arg84, vdw, 3.06Å         Met153, vdw, weak hbond, 3.4Å           Arg84, vdw, 3.06Å         Ala103, vdw, 3.45Å           Glu154, hbond, vdw, 2.88Å         Leu205, vdw, 3.31Å           Leu205, vdw, 3.45Å         Leu205, vdw, 3.44Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | Glu154, hbond, vdw, 3.15Å      | Ala215, vdw, 3.59A            |
| SI         Glu154, hbond, vdw, 2.81Å<br>Met156, hbond, vdw, 3.01Å         Ala103, vdw, 3.48Å<br>Leu205, vdw, 3.5Å           SI         Glu154, hbond, vdw, 2.81Å<br>Met156, hbond, vdw, 3.01Å         Ala103, vdw, 3.47Å           Ile82, vdw, 3.23Å         Leu205, vdw, 3.29Å           Ile82, vdw, 3.23Å         Met153, vdw, 3.4Å           Leu205, vdw, 3.29Å         Met153, vdw, 3.29Å           Glu154, vdw, weak hbond, 2.8Å         Met153, vdw, 3.25Å           Glu154, vdw, weak hbond, 3.25Å         Met153, vdw, weak hbond, 3.4Å           Arg84, vdw, 3.27Å         Met153, vdw, 3.27Å           Leu205, vdw, 3.49Å         Met103, vdw, 3.45Å           Glu154, hbond, vdw, 2.88Å         Leu205, vdw, 3.31Å           Glu154, hbond, vdw, 2.88Å         Leu205, vdw, 3.44Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5k         | Met156, hbond, vdw, 2.96Å      | Val90, vdw, 3.46A             |
| SI       Glu154, hbond, vdw, 2.81Å       Ala103, vdw, 3.48A         Leu205, vdw, 3.5Å       Ala103, vdw, 3.47Å         SI       Glu154, hbond, vdw, 2.81Å       Ala103, vdw, 3.47Å         Leu205, vdw, 3.29Å       Leu205, vdw, 3.29Å         Ile82, vdw, 3.23Å       Lys105, vdw, 3.29Å         Ile82, vdw, 3.28Å       Asp216, vdw, 3.29Å         Glu154, vdw, weak hbond, 2.8Å       Met153, vdw, weak hbond, 3.4Å         Asp216, hbond, 3.25Å       Met153, vdw, weak hbond, 3.4Å         Arg84, vdw, 3.27Å       Leu205, vdw, 3.27Å         Arg84, vdw, 3.06Å       Ala103, vdw, 3.45Å         Glu154, hbond, vdw, 2.88Å       Leu205, vdw, 3.31Å         Met156, hbond, vdw, 2.96Å       Lys105, vdw, 3.44Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                | Val90, vdw, 3.19A             |
| SI         Glu154, hbond, vdw, 2.81Å         Ala103, vdw, 3.47Å           51         Glu154, hbond, vdw, 3.01Å         Leu205, vdw, 3.29Å           Ile82, vdw, 3.23Å         Leu205, vdw, 3.29Å           Ile82, vdw, 3.28Å         Met153, vdw, 3.4Å           Lys105, vdw, 3.29Å         Lys105, vdw, 3.29Å           Glu154, vdw, weak hbond, 2.8Å         Met153, vdw, 3.25Å           Glu154, vdw, weak hbond, 2.8Å         Met153, vdw, weak hbond, 3.4Å           Arg84, vdw, 3.27Å         Ala215, vdw, 3.27Å           Arg84, vdw, 3.06Å         Ala103, vdw, 3.45Å           Glu154, hbond, vdw, 2.88Å         Leu205, vdw, 3.31Å           Met156, hbond, vdw, 2.96Å         Lys105, vdw, 3.44Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                | Ala103, vdw, 3.48A            |
| Sl       Glu154, hbond, vdw, 2.81Å       Ala103, vdw, 3.4/A         Met156, hbond, vdw, 3.01Å       Leu205, vdw, 3.29Å         Ile82, vdw, 3.23Å       Met153, vdw, 3.4Å         Lys105, vdw, 3.29Å       Asp216, vdw, 3.29Å         Sm       Glu154, vdw, weak hbond, 2.8Å         Asp216, hbond, 3.25Å       Met153, vdw, 3.25Å         Met153, vdw, 3.27Å       Arg84, vdw, 3.27Å         Arg84, vdw, 3.06Å       Ala103, vdw, 3.45Å         Glu154, hbond, vdw, 2.88Å       Leu205, vdw, 3.31Å         Met156, hbond, vdw, 2.96Å       Lys105, vdw, 3.44Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                | Leu205, vdw, 3.5A             |
| 51         Met156, hbond, vdw, 3.01Å         Leu205, vdw, 3.29Å           Ile82, vdw, 3.23Å         Ile82, vdw, 3.23Å         Met153, vdw, 3.4Å           Ile82, vdw, 3.28Å         Lys105, vdw, 3.29Å           Sm         Glu154, vdw, weak hbond, 2.8Å         Asp216, vdw, 3.25Å           Met153, vdw, 3.27Å         Met153, vdw, 3.27Å           Arg84, vdw, 3.27Å         Leu205, vdw, 3.27Å           Arg84, vdw, 3.06Å         Ala103, vdw, 3.45Å           Glu154, hbond, vdw, 2.88Å         Leu205, vdw, 3.31Å           Met156, hbond, vdw, 2.96Å         Lys105, vdw, 3.44Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | Glu154, hbond, vdw, 2.81Å      | Ala $103$ , vdw, $3.4/A$      |
| Sn         Ile82, vdw, 3.23Å         Met133, vdw, 3.4A           Ile82, vdw, 3.28Å         Lys105, vdw, 3.29Å           Ile82, vdw, 3.28Å         Asp216, vdw, 3.25Å           Glu154, vdw, weak hbond, 2.8Å         Met153, vdw, weak hbond, 3.4Å           Asp216, hbond, 3.25Å         Met153, vdw, weak hbond, 3.4Å           Arg84, vdw, 3.27Å         Leu205, vdw, 3.27Å           Arg84, vdw, 3.06Å         Ala103, vdw, 3.45Å           Glu154, hbond, vdw, 2.88Å         Leu205, vdw, 3.31Å           Met156, hbond, vdw, 2.96Å         Lys105, vdw, 3.44Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51         | Met156, hbond, vdw, 3.01Å      | Leu205, Vdw, 3.29A            |
| Ile82, vdw, 3.28Å         Lys105, vdw, 3.29Å           Sm         Glu154, vdw, weak hbond, 2.8Å         Asp216, vdw, 3.25Å           Met153, vdw, weak hbond, 3.4Å         Ala215, vdw, 3.27Å           Arg84, vdw, 3.27Å         Leu205, vdw, 3.49Å           Glu154, hbond, vdw, 2.88Å         Ala103, vdw, 3.45Å           Glu154, hbond, vdw, 2.96Å         Leu205, vdw, 3.31Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | Ile82, vdw, 3.23Å              | Met155, vdw, 5.4A             |
| Sm         Glu154, vdw, weak hbond, 2.8Å         Met153, vdw, weak hbond, 3.4Å           Asp216, hbond, 3.25Å         Met153, vdw, weak hbond, 3.4Å           Arg84, vdw, 3.27Å         Ala215, vdw, 3.27Å           Arg84, vdw, 3.06Å         Leu205, vdw, 3.45Å           6a         Glu154, hbond, vdw, 2.88Å           Met156, hbond, vdw, 2.96Å         Leu205, vdw, 3.44Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | Ile82, vdw, 3.28Å              | $\Delta cm^{216}$ ydw, 3.29A  |
| Sm         Glu154, vdw, weak hoolid, 2.8A         Met153, vdw, weak hoolid, 3.4Å           Asp216, hbond, 3.25Å         Ala215, vdw, 3.27Å           Arg84, vdw, 3.27Å         Leu205, vdw, 3.49Å           6a         Glu154, hbond, vdw, 2.88Å           Met156, hbond, vdw, 2.96Å         Leu205, vdw, 3.31Å           Leu205, vdw, 3.44Å         Leu205, vdw, 3.44Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | Chu154 ydy, week blend 2.8Å    | Asp210, vdw, 5.25A            |
| 5m         Arg84, vdw, 3.27Å         Ala215, vdw, 3.27Å           Arg84, vdw, 3.06Å         Leu205, vdw, 3.49Å           6a         Glu154, hbond, vdw, 2.88Å         Leu205, vdw, 3.31Å           Met156, hbond, vdw, 2.96Å         Lys105, vdw, 3.44Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | Asp216 bbond 3 25Å             | Met153, vdw, weak hbond, 3.4Å |
| Arg84, vdw, 3.27A         Leu205, vdw, 3.49Å           Arg84, vdw, 3.06Å         Ala103, vdw, 3.45Å           Glu154, hbond, vdw, 2.88Å         Leu205, vdw, 3.31Å           Met156, hbond, vdw, 2.96Å         Lys105, vdw, 3.44Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5m         | Asp210, Hoold, 5.25A           | Ala215, vdw, 3.27Å            |
| 6a         Glu154, hbond, vdw, 2.88Å         Ala103, vdw, 3.45Å           Met156, hbond, vdw, 2.96Å         Leu205, vdw, 3.31Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | Arg84, vdw, $3.27A$            | Leu205, vdw, 3.49Å            |
| 6a         Glu154, hbond, vdw, 2.88Å         Leu205, vdw, 3.31Å           Met156, hbond, vdw, 2.96Å         Lys105, vdw, 3.44Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | Aigot, vuw, 5.00A              | Ala103 vdw 3.45Å              |
| 6a         Guilest, hoold, vdw, 2.96Å         Leu205, vdw, 5.91Å           Met156, hbond, vdw, 2.96Å         Lys105, vdw, 3.44Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6a         | Glu154 blond vdw 288Å          | Leu205 vdw 3 31 Å             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | Met156 hbond vdw 2.96Å         | L vs105 vdw 3.44Å             |
| Asn216 vdw 3 3Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 1101130, 100110, 10W, 2.70A    | Asp216 vdw 3 3Å               |
| $Met156 hbond vdw 2.95\text{\AA} Met153 vdw 3.3\text{\AA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | Met156 hbond vdw 295Å          | Met153 vdw 3 3Å               |
| 6b Glu154, hbond, vdw, 3Å Ala103 vdw 346Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6b         | Glu154, hbond, vdw 3Å          | Ala103. vdw. 3 46Å            |
| Met156, hbond, vdw, 3.08Å Val137, vdw, 3.35Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Met156, hbond vdw 3 08Å        | Val137. vdw 3 35Å             |
| Glu154, hbond, vdw, 3.15Å Asp216, vdw, 3.14Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60         | Glu154, hbond, vdw, 3.15Å      | Asp216, vdw, 3.14Å            |

| 6d | Met156, hbond, vdw, 3.07Å<br>Glu154, hbond, vdw, 3Å | Asp216, vdw, 3.23Å<br>Met153, vdw, 3.42Å<br>Leu205, vdw, 3.37Å<br>Ala103, vdw, 3.34Å |
|----|-----------------------------------------------------|--------------------------------------------------------------------------------------|
| 6e | Met156, hbond, vdw, 3.15Å<br>Ile82, vdw, 3.11Å      | Val90, vdw, 3.39Å<br>Ala103, vdw, 3.38Å                                              |

\*'hbond' – hydrogen bond, 'vdw' – van der Waals, 'weak hbond' – weak hydrogen bond.

![](_page_50_Figure_2.jpeg)

Binding Score : -8.2 kcal/mol Human metabolic stability : unstable (0.457)

Binding Score : -8.4 kcal/mol Human metabolic stability : stable (0.592)

Binding Score : -7.7 kcal/mol Human metabolic stability : stable (0.561)

Figure S45. Molecular docking simulation of 1 (Truli), 5k and 5l.

![](_page_51_Figure_0.jpeg)

Binding Score : -4.0 kcal/mol

Binding Score : -5.5 kcal/mol

Binding Score : -5.9 kcal/mol

# Figure S46. Molecular docking simulation of **5a**, **5b** and **5c**.

![](_page_51_Figure_5.jpeg)

Binding Score : -4.5 kcal/mol

Binding Score : -7.3 kcal/mol

Binding Score : -6.5 kcal/mol

Figure S47. Molecular docking simulation of 5d, 5e and 5f.

![](_page_52_Figure_0.jpeg)

Binding Score : -5.8 kcal/mol

Binding Score : -5.7 kcal/mol

![](_page_52_Figure_4.jpeg)

![](_page_52_Figure_5.jpeg)

Binding Score : -4.8 kcal/mol

Binding Score : -5.7 kcal/mol

Binding Score : -7.4 kcal/mol

Figure S49. Molecular docking simulation of **5***j*, **5***m* and **6***a*.

![](_page_53_Figure_0.jpeg)

![](_page_53_Figure_1.jpeg)

# 10. References

- Gnedeva K, Hudspeth AJ, Kastan N, Liang R, Meinke PT, Huggins DJ, et al. Pyrrolo [2,3-b]pyridine-3-carboxamide compositions and methods for ameliorating hearing loss. WO2021/158936A1 (Patent) 2021.
- Dalziel ME, Patel JJ, Kaye MK, Cosman JL, Kitching MO, Snieckus V. Regioselective Functionalization of 7-Azaindole by Controlled Annular Isomerism: The Directed Metalation-Group Dance. *Angewandte Chemie International Edition*. 2019;58(22):7313-7317. doi:10.1002/anie.201901724.
- Lin M, Tesconi M, Tischler M. Use of (1)H NMR to facilitate solubility measurement for drug discovery compounds. *International Journal of Pharmaceutics*. 2009;369(1-2):47-52. doi: 10.1016/j.ijpharm.2008.10.038.
- Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: An examination of in vitro half-life approach and nonspecific binding to microsomes. *Drug Metabolism and Disposition*. 1999;27(11):1350-1359.
- 5. Di L, Kerns EH, Hong Y, Kleintop TA, McConnell OJ, Huryn DM. Optimization of a higher throughput microsomal stability screening assay for profiling drug discovery

candidates. *Journal of Biomolecular Screening*. 2003;8(4):453-462. doi: 10.1177/1087057103255988.

- Di L, Kerns EH. Drug-like properties: concepts, structure design and methods from ADME to toxicity optimization. Academic press; 2015.
- Ryu JY, Lee JH, Lee BH, Song JS, Ahn S, Oh KS. PredMS: a random forest model for predicting metabolic stability of drug candidates in human liver microsomes. *Bioinformatics*. 2022;38(2):364-368. doi: 10.1093/bioinformatics/btab547.
- Lim J, Ryu S, Park K, Choe YJ, Ham J, Kim WY. Predicting Drug-Target Interaction Using a Novel Graph Neural Network with 3D Structure-Embedded Graph Representation. *Journal of Chemical Information and Modeling*. 2019;59(9):3981-3988. doi: 10.1021/acs.jcim.9b00387.
- Moon S, Zhung W, Yang S, Lim J, Kim WY. PIGNet: a physics-informed deep learning model toward generalized drug-target interaction predictions. *Chemical Science*. 2022;13(13):3661-3673. doi: 10.1039/d1sc06946b.
- Bandarage UK, Cao J, Come JH, Court JJ, Gao H, Jacobs MD, et al. ROCK inhibitors
   Design, synthesis and structure-activity relationships of 7-azaindole-based Rho kinase (ROCK) inhibitors. *Bioorganic and Medicinal Chemistry Letters*. 2018;28(15):2622-2626. doi: 10.1016/j.bmcl.2018.06.040.