Electronic Supporting Information

Discovery of N-Substituted-2-Oxoindolin Benzoylhydrazines as c-MET/SMO Modulators in EGFRi-Resistant Non-Small Cell Lung Cancer

Stefano Tomassi,^{a,e‡} Benito Natale,^{a‡} Michele Roggia,^a Luisa Amato,^b Caterina De Rosa,^b Carminia Maria Della Corte,^b Emma Baglini,^c Giorgio Amendola,^a Anna Messere,^a Salvatore Di Maro,^a Elisabetta Barresi,^d Federico Da Settimo,^d Maria Letizia Trincavelli,^d Fortunato Ciardiello,^b Sabrina Taliani,^{d*} Floriana Morgillo,^{b**} and Sandro Cosconati^{a***}

^a DiSTABiF, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy.

^b Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Pansini, 5, 80138 Naples, Italy.

^c CNR IFC, Institute of Clinical Physiology, National Research Council of Italy, CNR Research Area, Via G.

Moruzzi 1, Pisa 56124, Italy.

^d Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy.

^e Department of Life Science, Health, and Health Professions, LINK Campus University, Via del Casale di San Pio V, 44, 00165, Rome, Italy

Table of contents

Figure S1. Predicted binding modes of 3.	S1
Figure S2. MD L-RMSD plots.	S2
Figure S3. MD protein-ligand interaction histogram	S3
Table S1. Description of the employed 20 Tyrosine Kinases.	S3
NMR spectra of selected compounds 3, 6, 10, and 25.	S6
Figure S4. SMO Binding curve on SMO receptor of 3, 5, 10, and 25.	S14
Figure S5. MTT Cell viability Assay for HCC827 and PC9 cell lines treated with Gefitinib and	
Osimertinib.	S15
Figure S6. MTT Cell viability assay on HCC827-GR and PC9-OR cell lines treated with the	
combination of the four compounds plus the TKIs.	S16
Figure S7. Western Blot raw gels for Figure 4 in the main text.	S17
Figure S8. Western Blot raw gels using HCC827-GR cell lines for Figure 6 in the main text.	S17
Figure S9. Western Blot raw gels using PC9-OR cell lines for Figure 6 in the main text.	S18
Figure S10. Annexin V/Propidium Iodide Apoptosis assay of Figure 7 in the main text.	S18
Figure S11. Western Blot raw gels using PC9-OR cell lines for Figure 7 in the main text.	S19
Figure S12. Western Blot raw gels using HCC827-GR cell lines for Figure 7 in the main text.	S19

Figure S1. Predicted binding mode of **3** in complex with DFG-in (A) and DFG-out (B) conformation of c-MET, respectively. The ligand and receptor are in green sticks and purple sticks and ribbons, respectively. H-bonds are represented as dashed yellow lines.

Figure S2. RMSD (Å) plot over simulation time (ns) of **3** in complex with DFG in (blue line) and DFG out (orange line) conformation of c-MET.

Figure S3. Histogram of protein-ligand interactions fraction of the 500 ns long MD simulation for **3** in complex with DFG in (A) and DFG out (B) conformations of c-MET, respectively. H-bonds are in green, hydrophobic contacts are in purple, and water-mediated interactions are in blue.

	Table S1.	Description	of the em	ployed 2	0 kinases.
--	-----------	-------------	-----------	----------	------------

ТК	Description
ABL(ABL1)	Full-length human ABL [2-1130(end) amino acids of accession number
	NP_005148.2] wasexpressed as N-terminal His-tagged protein (126 kDa)
	using baculovirus expressionsystem. His-tagged ABL was purified by
	using Ni-NTA affinity chromatography.
CSK	Full-length human CSK [1-450(end) amino acids of accession number
	NP_004374.1] wasexpressed as N-terminal GST-fusion protein (78 kDa)
	using baculovirus expressionsystem. GST-CSK was purified by using
	glutathione sepharose chromatography.
EGFR	Human EGFR, cytoplasmic domain [669-1210(end) amino acids of
	accession numberNP_005219.2] was expressed as N-terminal GST-fusion
	protein (89 kDa) usingbaculovirus expression system. GST-EGFR was
	purified by using glutathione sepharosechromatography.
EPHA2	Human EPHB4, cytoplasmic domain [577-987(end) amino acids of
	accession numberNP_004435.3] was expressed as N-terminal GST-
	protein (73 kDa) using baculovirusexpression system. GST-EPHB4 was
	purified by using glutathione sepharosechromatography.
FGFR1	Human FGFR1, cytoplasmic domain [398-822(end) amino acids of
	accession numberNP_075598.2] was expressed as N-terminal GST-fusion
	protein (75 kDa) usingbaculovirus expression system. GST-FGFR1 was

	purified by using glutathione sepharosechromatography.
FLT3	Human FLT3, cytoplasmic domain [564-993(end) amino acids of
	accession numberNP_004110.2] was expressed as N-terminal GST-fusion
	protein (77 kDa) usingbaculovirus expression system. GST-FLT3 was
	purified by using glutathione sepharosechromatography.
IGF1R	Human IGF1R, cytoplasmic domain [959-1367(end) amino acids of
	accession numberNP 000866.1] was expressed as N-terminal GST-fusion
	protein (73 kDa) usingbaculovirus expression system. GST-IGF1R was
	purified by using glutathione sepharosechromatography.
ІТК	Full-length human ITK [2-620(end) amino acids of accession number
	NP_005537.3] wasexpressed as N-terminal GST-fusion protein (99 kDa)
	using baculovirus expressionsystem. GST-ITK was purified by using
	glutathione sepharose chromatography.
ТАКЗ	Human IAK3, catalytic domain [795-1124(end) amino acids of accession
57 113	numberNP_000206 2] was expressed as N-terminal His-tagged protein
	(41 kDa) using haculovirusexpression system. His-tagged IAK3 was
	nurified by using Ni-NTA affinitychromatography and gel filtration
	chromatography
KDB	Human KDR cytoplasmic domain [790-1356/end) amino acids of
KUK	accession number NP_002244_1] was expressed as N-terminal GST-fusion
	protein (90 kDa) usingbaculovirus expression system GST-KDB was
	purified by using glutathione senharosechromatography
	Full longth human LCK [1 E00(and) aming acids of accession number
	ND 005247.21 wasovproceed as N terminal CCT fusion protoin (85 kDa)
	NP_003347.2] wasexpressed as N-terminal GST-rusion protein (85 kDa)
	duing baculovirus expressionsystem. GST-LCK was purified by using
	giutatinone sepharose cirromatography.
	Human Well, cytoplasmic domain [956-1390(end) amino acids of
	accession numbering_000236.2] was expressed as N-terminal GST-rusion
	protein (76 kDa) usingbaculovirus expression system. GST-IVET was
	purmed by using glutatione septiarosechromatography.
PDGFRα(PDGFRA)	Human PDGFRQ, cytoplasmic domain [550-1089(end) amino acids of
	accession numbering_006197.1] was expressed as N-terminal GS1-fusion
	protein(89 kDa) using baculovirusexpression system. GSI-PDGFRα was
	purified by using glutathione sepharosechromatography.
PYK2(PTK2B)	Full-length numan PYK2 [1-967(end) amino acids of accession number
	NP_//526/.1] wasexpressed as N-terminal GS1-fusion protein (138 kDa)
	using baculovirus expressionsystem. GST-PYK2 was purified by using
	glutathione sepharose chromatography.
SRC	Full-length human SRC [1-536(end) amino acids of accession number
	NP_005408.1] wasexpressed as N-terminal GS1-fusion protein (87 kDa)
	using baculovirus expressionsystem. GSI-SRC was purified by using
	glutathione sepharose chromatography.
SYK	Full-length human SYK [1-635(end) amino acids of accession number
	NP_003168.2] wasexpressed as N-terminal GST-fusion protein (99 kDa)
	using baculovirus expressionsystem. GST-SYK was purified by using
	glutathione sepharose chromatography.
ТІЕ2(ТЕК)	Human TIE2, cytoplasmic domain [771-1124(end) amino acids of
	accession numberNP_000450.1] was expressed as N-terminal GST-fusion
	protein (68 kDa) usingbaculovirus expression system. GST-TIE2 was
	purified by using glutathione sepharosechromatography.
TRKA(NTRK1)	Human TRKA, cytoplasmic domain [436-790(end) amino acids of

	accession numberNP_001012331.1] was expressed as N- terminal GST-
	fusion protein (67 kDa) usingbaculovirus expression system. GST-TRKA
	was purified by using glutathione sepharosechromatography
TYRO3	Human TYRO3, cytoplasmic domain of [453-890(end) amino acids of
	accession numberNP_006284.2] was expressed as N-terminal GST fusion
	protein (76 kDa) usingbaculovirus expression system. GST-TYRO3 was
	purified by using glutathione sepharosechromatography

Compound (3) ¹H NMR (400 MHz, DMSO-d₆)

Compound (3) ¹³C NMR (101 MHz, DMSO-d₆)

Compound (6) ¹H NMR (400 MHz, DMSO-d₆)

Compound (6) ¹³C NMR (101 MHz, DMSO-*d*₆)

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

Compound (10) ¹H NMR (400 MHz, DMSO-*d*₆)

Compound (10) ¹³C NMR (101 MHz, DMSO-*d*₆)

Compound (25) ¹H NMR (400 MHz, DMSO-d₆)

Compound (25) ¹³C NMR (101 MHz, DMSO-*d*₆)

Figure S4. SMO binding curves of compounds 3, 6, 10, and 25.

Figure S5. MTT Cell viability Assay with increasing concentrations of respective TKI (gefitinib for HCC827-GR and osimertinib for PC9-OR). Table shows the IC_{50} values for parental versus resistant NSCLC cell lines. Data are presented as mean of three biological replicates and four technical replicates ± SD. Statistical significance**p<0.01, ***p< 0.001 and ****p<0.0001.

Figure S6. MTT Cell viability Assay with increasing concentrations of compounds (**3**, **6**, **10**, **25**) in combination with IC_{50} value dose for respective TKI (gefitinib for HCC827-GR and osimertinib for PC9-OR). Table shows the IC_{50} values of the compound in combination with gefitinib or osimertinib for HCC827-GR and PC9-OR cell lines, respectively. Data are presented as mean of three biological replicates and four technical replicates ± SD. Statistical significance**p<0.01, ***p< 0.001 and ****p<0.0001.

Figure S7. Western Blot raw gels for Figure 4 in the main text.

Figure S8. Western Blot raw gels using HCC827-GR cell lines for Figure 6 in the main text.

Figure S9. Western Blot raw gels using PC9-OR cell lines for Figure 6 in the main text.

Figure S10. Annexin V/Propidium Iodide Apoptosis assay of Figure 7 in the main text.

Figure S11. Western Blot raw gels using PC9-OR cell lines for Figure 7 in the main text.

Figure S12. Western Blot raw gels using HCC827-GR cell lines for Figure 7 in the main text.