Supplementary Information (SI) for RSC Medicinal Chemistry. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information for:

Discovery of Hybrid Glypromate Conjugates with Neuroprotective Activity Against Paraquat-Induced Toxicity

Sara C. Silva-Reis,^{*a,b*} Vera M. Costa,^{*b,c*} Daniela Correia da Silva,^{*d*} David M. Pereira,^{*d*} Xavier

Cruz Correia,^a Xerardo García-Mera,^e José E. Rodríguez-Borges,^a Ivo E. Sampaio-Dias^{a,*}

^aLAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.

^bUCIBIO/REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.

^cAssociate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.

^dLAQV/REQUIMTE, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.

^eDepartment of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.

^{*}E-mail: ivdias@fc.up.pt.

Electronic Supplementary Information

Table of Contents

Figure S1. ¹ H-NMR spectrum (400 MHz, CDCl ₃) of conjugate 13a.	SI-3
Figure S2. ¹³ C $\{^{1}H\}$ -NMR and DEPT-135 spectra (101 MHz, CDCl ₃) of conjugate 13a.	SI-3
Figure S3. ¹ H-NMR spectrum (400 MHz, CDCl ₃) of conjugate 13b.	SI-4
Figure S4. ¹³ C{ ¹ H}-NMR and DEPT-135 spectra (101 MHz, CDCl ₃) of conjugate 13b.	SI-4
Figure S5. ¹ H-NMR spectrum (400 MHz, CDCl ₃) of conjugate 13c.	SI-5
Figure S6. ${}^{13}C{}^{1}H$ -NMR and DEPT-135 spectra (101 MHz, CDCl ₃) of conjugate 13c.	SI-5
Figure S7. ¹ H-NMR spectrum (400 MHz, CD ₃ OD) of conjugate 14a.	SI-6
Figure S8. ¹³ C{ ¹ H}-NMR and DEPT-135 spectra (101 MHz, CD ₃ OD) of conjugate 14a.	SI-6
Figure S9. ¹ H-NMR spectrum (400 MHz, CD ₃ OD) of conjugate 14b.	SI-7

Figure S10. ${}^{13}C{}^{1}H$ -NMR and DEPT-135 spectra (101 MHz, CD ₃ OD) of conjugate 14b.	SI-7
Figure S11. ¹ H-NMR spectrum (400 MHz, CD ₃ OD) of conjugate 14c.	SI-8
Figure S12. ${}^{13}C{}^{1}H$ -NMR and DEPT-135 spectra (101 MHz, CD ₃ OD) of conjugate 14c.	SI-8
Figure S13. ¹ H-NMR spectrum (400 MHz, CD ₃ OD) of conjugate 15a.	SI-9
Figure S14. ${}^{13}C{}^{1}H$ -NMR and DEPT-135 spectra (101 MHz, CD ₃ OD) of conjugate 15a.	SI-9
Figure S15. ¹ H-NMR spectrum (400 MHz, CD ₃ OD) of conjugate 15b.	SI-10
Figure S16. ${}^{13}C{}^{1}H$ -NMR and DEPT-135 spectra (101 MHz, CD ₃ OD) of conjugate 15b.	SI-10
Figure S17. ¹ H-NMR spectrum (400 MHz, CD ₃ OD) of conjugate 15c.	SI-11
Figure S18. ${}^{13}C{}^{1}H$ -NMR and DEPT-135 spectra (101 MHz, CD ₃ OD) of conjugate 15c.	SI-11
Figure S19. ¹ H-NMR spectrum (400 MHz, CDCl ₃) of conjugate 16a.	SI-12
Figure S20. ¹³ C{ ¹ H}-NMR and DEPT-135 spectra (101 MHz, CDCl ₃) of conjugate 16a.	SI-12
Figure S21. ¹ H-NMR spectrum (400 MHz, CDCl ₃) of conjugate 16b.	SI-13
Figure S22. ${}^{13}C{}^{1}H$ -NMR and DEPT-135 spectra (101 MHz, CDCl ₃) of conjugate 16b.	SI-13
Figure S23. ¹ H-NMR spectrum (400 MHz, CDCl ₃) of conjugate 16c.	SI-14
Figure S24. ${}^{13}C{}^{1}H$ -NMR and DEPT-135 spectra (101 MHz, CDCl ₃) of conjugate 16c.	SI-14
Figure S25. ¹ H-NMR spectrum (400 MHz, CD ₃ OD) of conjugate 17a.	SI-15
Figure S26. ${}^{13}C{}^{1}H$ -NMR and DEPT-135 spectra (101 MHz, CD ₃ OD) of conjugate 17a.	SI-15
Figure S27. ¹ H-NMR spectrum (400 MHz, CD ₃ OD) of conjugate 17b.	SI-16
Figure S28. ${}^{13}C{}^{1}H$ -NMR and DEPT-135 spectra (101 MHz, CD ₃ OD) of conjugate 17b.	SI-16
Figure S29. ¹ H-NMR spectrum (400 MHz, CD ₃ OD) of conjugate 17c.	SI-17
Figure S30. ${}^{13}C{}^{1}H$ -NMR and DEPT-135 spectra (101 MHz, CD ₃ OD) of conjugate 17c.	SI-17
Figure S31. ¹ H-NMR spectrum (400 MHz, CD ₃ OD) of conjugate 18a.	SI-18
Figure S32. ${}^{13}C{}^{1}H$ -NMR and DEPT-135 spectra (101 MHz, CD ₃ OD) of conjugate 18a.	SI-18
Figure S33. ¹ H-NMR spectrum (400 MHz, CD ₃ OD) of conjugate 18b.	SI-19
Figure S34. ¹³ C{ ¹ H}-NMR and DEPT-135 spectra (101 MHz, CD ₃ OD) of conjugate 18b.	SI-19
Figure S35. ¹ H-NMR spectrum (400 MHz, CD ₃ OD) of conjugate 18c.	SI-20
Figure S36. ${}^{13}C{}^{1}H$ -NMR and DEPT-135 spectra (101 MHz, CD ₃ OD) of conjugate 18c.	SI-20

Figure S10. ¹³C{¹H}-NMR and DEPT-135 spectra (101 MHz, CD₃OD) of conjugate 14b.

Figure S14. ¹³C{¹H}-NMR and DEPT-135 spectra (101 MHz, CD₃OD) of conjugate 15a.

67.1 67.4 67.4 58.7 58.7 58.7 58.7 58.7 58.7 58.7 58.7 53.8 53.8 53.4 52.9 41.5 52.9 53.4 53.4 53.7 53.4 53.6 54.7 54.7 54.7 54.7 54.7 54.7 54.7 54.7 54.7 54.7 55.8 55.6 <li

Figure S28. ¹³C{¹H}-NMR and DEPT-135 spectra (101 MHz, CD₃OD) of conjugate 17b.

0

