Title

Novel rhodanine-thiazole hybrids as potential antidiabetic agents: A structurebased drug design approach

Shankar Gharge ^a, Shankar G. Alegaon ^{a, *}, Shriram D. Ranade ^a, Rohini S. Kavalapure ^a, B. R. Prashantha Kumar ^b

^a Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher education and Research, Belagavi - 590 010, Karnataka, India

^b Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education and Research, Mysuru-570015, Karnataka, India

Corresponding author

Shankar G. Alegaon: Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher education and Research, Belagavi - 590 010, Karnataka, India. Tel.: +91 8312471399; E-mail: sgalegaon@klepharm.edu (Shankar G. Alegaon)

Spectral Data of Synthesized Derivatives (3a-3b):

(Z)-4-((4-oxo-2-thioxothiazolidin-5-ylidene) methyl) benzaldehyde (3a): Orange powder; yield: 90 %, m.p.: >300°C. FTIR (KBr, cm-1): 3018.73 (N-H), 2861.52 (C-H str of -CHO), 1724.44 (C=O), 1663.68 (C=C). 1H NMR [400.MHz, δ ppm, DMSO-d₆] δ: 7.65-7.77 (m, 3H, Ar-H), 7.99-8.09 (m, 2H, Ar-H), 10.11 (s, 1H, -CHO), 13.96 (s, 1H, -NH). (*Z*)-2-(5-(4-formylbenzylidene)-4-oxo-2-thioxothiazolidin-3-yl) acetic acid (3b): Yellow solid powder, yield: 86%, m.p.: >300°C. FTIR (KBR, cm⁻¹): 3029.34 (-OH str of -COOH), 3010.05 (N-H), 2848.98 (C-H str of -CHO), 1603.88 (C=O), 1508.40 (C=C). ¹H NMR [400 MHz, δ ppm, *DMSO-d*₆] δ: 4.68 (s,2H, -CH₂), 7.80-7.84 (m, 3H, Ar-H), 7.92-8.01 (m, 2H, Ar-H), 8.03 (s, 1H, -OH), 10.03 (s, 1H, -CHO).

Spectral Data of Synthesized Analogs (6a-6f):

2-hydrazinyl-4-phenylthiazole (6a): These analogs were synthesized by general procedure, Orange solid powder; yield: 86 %, m.p.: 168-170°C. FTIR (KBr, cm-1): 3337.96 (N-H), 1633.78 (C=O), 1549.87 (C=C). **2-hydrazinyl-4-(p-tolyl) thiazole (6b):** Orange solid powder; yield: 88 %, m.p.: 168-170°C. FTIR (KBr, cm-1): 3354.35 (N-H), 1639.56 (C=O), 1552.62 (C=C). **4-(4-fluorophenyl)-2-hydrazinylthiazole (6c):** Dark purple solid powder; yield: 82 %, m.p.: 175-177°C. FTIR (KBr, cm-1): 3186.54 (N-H), 1600.02 (C=O), 1558.55 (C=C). **2-hydrazinyl-4-(4-methoxyphenyl) thiazole (6d):** Brown solid powder; yield: 93 %, m.p.: 169-171°C. FTIR (KBr, cm-1): 3472.02 (N-H), 2841.27(-OCH₃), 1630.88 (C=O), 1558.56 (C=C). **4-(4-chlorophenyl)-2-hydrazinylthiazole (6e):** Red solid powder; yield: 86 %, m.p.: 178-180°C. FTIR (KBr, cm-1): 3407.40 (N-H), 1537.33 (C=O), 1523.83 (C=C). **4-(4-bromophenyl)-2-hydrazinylthiazole (6f):** Brown solid powder; yield: 91 %, m.p.: 168-170°C. FTIR (KBr, cm-1): 3400.65 (N-H), 1608 (C=O), 1540.55 (C=C).

Comp	Percent survival L929 cell lines				
	125 ug/ml	250 ug/ml			
7a	89.38	83.53			
7b	88.37	82.09			
7c	82.22	78.17			
7d	76.31	77.84			
7e	91.25	85.22			
7f	90.17	84.12			
7g	88.85	82.42			
7h	86.24	80.08			
7i	81.89	76.12			
7j	87.07	81.84			
7k	86.01	80.18			
71	89.26	83.19			

table. S1: Toxicity results on normal mouse fibroblast L929 cell lines.

table. S2: Enrichment analysis of modulated proteins by the compounds 7a-7l.

Pathway (KEGG ID)	OGC/BGC	Strength	FDR	Proteins
MAPK signaling pathway	0.0594	1.24	5.17E-14	MAPK1,MAPK14,FLT3,PDGFRB,KDR,EGFR,
(hsa04010)				KIT,DUSP16,INSR,CASP3,MET,PLA2G4A,G
				RB2,MAPK8,FGFR1,TNF,FGFR2
Insulin resistance (hsa04931)	0.1038	1.48	1.26E-11	PYGM,PYGL,CPT1A,INSR,GYS1,PRKCD,MT

				OR,PTPN1,MAPK8,PPARA,TNF,GLUT
PPAR signaling pathway	0.0430	1.1	4.35E-11	MAPK1,FLT3,PDGFRB,KDR,EGFR,KIT,INSR,
(hsa03320)				GLUT,MET,GYS1,HSP90AA1,PTK2,MTOR,C
				PT1A,PPARG,PPARA
Insulin signaling pathway	0.0758	1.35	1.42E-09	PYGM,MAPK1,PYGL,GCK,INSR,GYS1,MTO
(hsa04910)				R,PTPN1, AMY2A, GAA
Starch and sucrose metabolism	0.1250	1.57	2.20E-09	MAPK1, AMY2A, GAA,
(hsa00500)				SERPINE1,CASP3,PRKCD,SELE,MAPK8,TNF
				,GLUT
Type II diabetes mellitus	0.1556	1.66	1.06E-08	МАРК1,АМҮ2А,
(hsa04930)				GCK,INSR,PRKCD,MTOR,MAPK8,TNF, GAA
Glycogen metabolism (hsa04922)	0.0700	1.31	8.93E-07	PYGM,PYGL,GCK,GAA,
				CPT1A,GYS1,PPARA, , AMY2A
Adipocytokine signaling pathway (hsa04920)	0.0735	1.33	3.25E-05	CPT1A,MTOR,MAPK8,PPARA,TNF
FoxO signaling nathway	0 0476	1 15	3 59F-05	MAPK1 MAPK14 EGER INSR GRB2 MAPK8
(hsa04068)	0.0.70	0	0.001 00	······································
AGE-RAGE signaling pathway in	0.0938	1.44	3.86E-05	PYGM,PYGL,GCK,GYS1
diabetic complications				
(hsa04933)				
AMPK signaling pathway	0.0417	1.09	0.00027	CPT1A,PPARG,INSR,GYS1,MTOR
(hsa04152)				
mTOR signaling pathway	0.0333	0.99	0.00071	MAPK1,INSR,MTOR,GRB2,TNF
(hsa04150)				
JAK-STAT signaling pathway	0.0253	0.87	0.0068	PDGFRB,EGFR,MTOR,GRB2
(hsa04630)				
PI3K-Akt signaling pathway	0.0400	1.07	0.0071	GRB2,FGFR1,FGFR2
(hsa04151)				
Insulin secretion (hsa04911)	0.0366	1.03	0.009	GCK,CCKAR,GLP1R
Pancreatic secretion (hsa04972)	0.0309	0.96	0.0131	CA2,CCKAR,PLA2G2A
Glycolysis / Gluconeogenesis	0.0313	0.96	0.0489	GAA, GCK,LDHA, , AMY2A
(hsa00010)				

Were, OGC: Observed gene count, BGC: Background gene count, FDR: False discovery rate

table. S3: Binding affinity and interactions of compounds (7a-7l) in α-amylase binding pocket (PDB ID: 4W93) using Glide module of Schrodinger's.

Compounds	Docking Score (XP)	Glide Energy (Kcal/mol)	Amino Acids
7a	-4.82	-45.98	ASP197 , TRP58, TYR62
7b	-6.15	-52.49	HIE201, ASP197, HIE299, TYR151
7c	-6.13	-53.42	HIE201, ASP197, HIE299, TYR151
7d	-5.76	-53.56	HIE201, TYR151, ASP197, HIE299
7e	-6.21	-52.90	HIE201, ASP197, HIE299, TYR151
7f	-6.25	-51.53	HIE201, ASP197, HIE299, TYR151
7g	-6.02	-52.80	HIE201, LYS200, TRP59, TYR151

HIE201, LYS200, ASP197, HIE299, TYR151	-58.47	-6.22	7h
ASP356, ARG195, ASP197, HIE201 , TYR15	-55.24	-5.73	7 i
GLU233, ARG195, ASP356	-50.79	-5.02	7j
ASP197, ARG195 , ASP356	-49.26	-5.81	7k
ASP197, ARG195, HIE201, TYR151, ASP356	-55.17	-5.45	71
ARG195, ASP197, LYS200, HIE201, GLU240, TYR151, ILE235, GLU233, HIE299	-63.80	-10.15	Acarbose

table. S4: Binding affinity and interactions of compounds (7a-l) in α -glucosidase binding pocket (PDB ID: 3A47) using Glide module of Schrodinger's.

Compounds	Docking Score	Glide Energy	Amino Acids
	(XP)	(Kcal/mol)	
7a	-5.21	-58.93	HIE239, LYS155, PHE157, ASH214
7b	-4.28	-56.99	GLU276, HIE279, HIE239 , HIS245
7c	-4.76	-62.21	GLU276, ASH214, HIE279, HIS245, HIE239 , ASN241
7d	-5.27	-47.02	HIE239, PHE157, LYS155
7e	-5.73	-55.21	HIE239, LYS155, PHE157 , ASH214
7f	-5.83	-50.71	HIE239, PHE157, LYS155, ASH214
7g	-6.35	-54.17	HIE239, PHE157, GLU304, GLY306, PRO317
7h	-5.56	-58.04	GLN350, GLU276, HIE279, PRO309,
7 i	-5.83	-50.71	HIE239, PHE157
7j	-4.71	-57.09	ARG439, PHE157, HIE239 , ASN241, ASN246
7k	-6.45	-54.29	HIE239, PHE157, GLU304, GLY306, PRO317
71	-4.954	-54.75	ARG439, PHE157, HIE239 , ASN241
Acarbose	-9.83	-58.14	GLU304, PHE157, ASP408, HIE239

table. S5: Binding affinity and interactions of compounds (7a-I) in PPAR-y binding pocket (PDB ID: 5Y2O) using

Compounds	Docking Score (XP)	Glide Energy (Kcal/mol)	Amino Acids
7a	-8.02	-57.40	HIE323, SER289, TYR473
7b	-7.6	-52.75	CYS285, ARG288
7c	-7.17	-55.67	CYS285, ARG288
7d	-7.17	-52.53	TYR327, CYS285

Glide module of Schrodinger's.

7e	-8.23	-60.74	HIE323, SER289, TYR473, GLU259
7f	-8.65	-55.22	HIE323, SER289, TYR473, GLU259
7g	-7.3	-50.39	TYR327, HIE449
7h	-7.17	-56.71	CYS285, ARG288
7 i	-7.6	-52.75	CYS285
7j	-7.12	-54.88	TYR327
71	-6.94	-55.07	TYR327
7k	-7.12	-55.77	TYR327, CYS285
Pioglitazone	-10.57	-59.11	HIE323, SER289, TYR473

table. S6: MM/GBSA Calculation of synthesized compounds (7a-l).

Comp	Prime Energy	Complex Energy	MMGBSA	MMGBSA dG Bind Hbond	MMGBSA			
			dG Bind		dG Bind vdW			
	Kcal/mol	Kcal/mol	Kcal/mol	Kcal/mol	Kcal/mol			
	α-amylase binding pocket (PDB ID: 4W93)							
7a	-20694.2	-20694.1	-42.9	-1.24	-48.7			
7b	-20705.9	-20705.8	-53.0	-1.46	-47.7			
7c	-20703.1	-20703.0	-51.5	-1.44	-48.24			
7d	-20709.7	-20709.7	-51.4	-1.46	-48.5			
7e	-20705.3	-20705.3	-61.2	-1.45	-47.6			
7f	-20705.0	-20704.9	-61.7	-1.45	-46.24			
7g	-20710.1	-20710.1	-50.8	-1.74	-52.6			
7h	-20732.5	-20732.4	-59.1	-2.91	-52.94			
7i	-20723.7	-20723.7	-50.0	-2.30	-57.9			
7j	-20735.4	-20735.3	-48.4	-0.09	-54.1			
7k	-20720.6	-20720.6	-48.1	-1.40	-52.4			
71	-20720.6	-20720.5	-41.2	-1.26	-55.1			
		α-glucosid	lase binding po	cket (PDB ID: 3A47)				
7a	-24384.2	-24384.2	-44.2	-1.63	-55.1			
7b	-24374.8	-24374.8	-40.1	-1.16	-59.4			
7c	-24390.0	-24389.9	-39.2	-1.46	-58.9			
7d	-24398.8	-24398.7	-48.2	-1.64	-53.8			

7e	-24388.2	-24388.2	-57.9	-1.52	-50.9
7f	-24383.1	-24383.1	-58.0	-1.0	-56.8
7g	-24406.4	-24406.4	-62.1	-1.85	-51.2
7h	-24405.1	-24405.0	-33.3	-1.94	-60.0
7i	-24392.1	-24392.6	-46.1	-1.38	-62.1
7j	-24407.2	-24407.2	-42.1	-1.44	-55.6
7k	-24403.3	-24403.3	-42.9	-0.80	-55.8
71	-24413.7	-24413.7	-63.2	-1.86	-50.9

PPAR-γ binding pocket (PDB ID: 5Y2O)

7a	-10934.5	-10934.5	-70.0	-0.94	-55.3
7b	-10922.1	-10922.1	-60.0	-0.001	-61.1
7c	-10891.3	-10891.3	-62.8	-1.8	-58.2
7d	-10913.8	-10913.8	-69.2	-0.45	-62.1
7e	-10915.2	-10915.2	-69.6	-1.8	-57.1
7f	10905.2	10905.2	-70.7	-0.24	-63.9
7g	-10927.5	-10927.5	-60.9	0	-55.6
7h	-10880.3	-10880.3	-69.1	-0.001	-67.0
7i	-10919.3	-10919.3	-62.1	-0.004	-60.1
7j	-10911.17	-10911.17	-64.7	-0.77	-67.6
7k	-10936.6	-10936.6	-65.0	0	-61.7
71	-10889.7	-10889.7	-64.9	-0.001	-62.8

table. S7: Final Energy of Geometry optimized structures.

Compound	ESP mean (kcal/mol)	Gas Phase Energy (eV)	Final Energy
7a	-42.41	-2259.39221	-2259.39221
7b	-42.6	-2298.673487	-2298.673487
7c	-40.29	-2358.58469	-2358.58469
7d	-42.92	-2373.878607	-2373.878607
7g	-43.52	-2487.283448	-2487.283448
7h	-41.35	-2526.555163	-2526.555163
7 i	-41.92	-2586.515849	-2586.515849
7j	-43.06	-2601.812524	-2601.812524
7k	-40.88	-2371.6723	-2371.6723
71	-39.8	-5060.56535	-5060.56535

Quantum chemical	7a	7b	7c	7d	7g	7h	
parameters							
Е _{номо} (eV)	-0.20284	-0.19976	-0.20404	-0.1935	-0.20191	-0.1994	
E _{LUMO} (eV)	-0.10954	-0.10893	-0.11062	-0.1086	-0.10699	-0.1067	
ΔE _{GAP} (eV)	0.0933	0.09083	0.09342	0.0849	0.09491	0.0927	
Hardness (η)	0.0466	0.04541	0.04671	0.0424	0.047458	0.04635	
dipole moment (µ)	-0.2576	-0.25422	-0.2593	-0.2478	-0.255	-0.2527	
excitation binding energy	0.001547	0.00147	0.00157	0.00130	0.001543	0.00148	
(ω)							
Softness (σ)	21.46	22.02	21.40	23.58	21.08	21.57	
Quantum chemical	7i	7j	7k	71			
parameters							
Е _{номо} (eV)	-0.20333	-0.193729	-0.20667	-0.2054			
E _{LUMO} (eV)	-0.10778	-0.109387	-0.10831	-0.10913			
ΔE _{GAP} (eV)	0.095556	0.084342	0.098362	0.0962			
Hardness (η)	0.04777	0.042171	0.049181	0.0481			
dipole moment (µ)	-0.257	-0.248	-0.260	-0.259			
excitation binding energy	0.001547	0.001296	0.001664	0.0016131			
(ω)							
Softness (σ)	20.92	23.71	20.33	20.79			

table. S8: Calculated quantum chemical parameters of synthesized compounds Molecular electrostatic Potential Surface.

0

HN

Figure S1. Chemical structures of synthesized compounds (7a-7l).

Fig. S2: (a) STRING identified Protein-protein interaction and (b) The cluster analysis where cluster 1: red; cluster 2: green; cluster 3: blue.

Figure S3. a) The Gene ontology for the top 10 modulated proteins by biological processes (orange), Molecular function (blue), and cellular components (green), b) Bubble plot represents KEGG enrichment pathways related to GeneCount.

Figure S4. Designed compound 7e based on e-pharmacophore modelling

7d

7c

7f

Figure S6: 2D binding orientation of synthesized derivatives in α-glucosidase binding pocket (PDB ID: 3A47).

7h

7I

7i

7k

7g

Figure S7: 2D binding orientation of synthesized derivatives in PPAR-gamma binding pocket (PDB ID: 5Y2O).

Fig. S8. 2D binding orientation of 7e and 7f in α -amylase binding pocket (PDB ID: 4W93).

Fig. S9. 2D binding orientation of acarbose in a) α -amylase, b) α -glucosidase binding pocket.

Fig. S10. 2D binding orientation of 7g and 7l in α -glucosidase binding pocket (PDB ID: 3A47).

Figure S11. (a) Protein Ligand RMSD Plot of 7e, (b) Protein RMSF Plot, (c) Protein Ligand Contacts timeline, (d) Ligand RMSF plot over period of 100 ns within α-amylase protein

Figure S12. (a) Protein Ligand RMSD Plot of 7f, (b) Protein RMSF Plot, (c) Protein Ligand Contacts timeline, (d) Ligand RMSF plot over period of 100 ns within α-amylase protein

Figure S13. a) Protein ligand contacts of compound 7e and 7f with the respective amino acids of the protein (b) Ligand protein contacts of 7e and 7f with the respective amino acids of the α-amylase protein.

Figure S14. Contours of HOMO and LUMO of synthesized compounds

Figure S15. MEP map of synthesized compounds

table. S9: Pharmacokinetic prediction:

In the Qikprop module of Schrodinger's, the synthetic derivatives **(7a-I)** were predicted for the ADME prediction. The development of the pharmacokinetic profile of synthetic derivatives as bioactives depends heavily on adsorption, distribution, metabolism, and excretion.

QPP MDCK: apparent MDCK permeability (nm/sec) (<25 poor, >500 great).
QPlog Khsa: prediction of binding to human serum albumin (-1.5 to 1.5).
QPlog BB: predicted brain/blood partition coefficient (-3.0 to 1.2).
QPlogPo/w: octanol/water partition coefficient (<5).
QPlogS: Aqueous solubility (-6.5 to 0.5).
QPlogHERG: IC₅₀ value for blockage of HERG K⁺ channels (<5).

QPPCaco: apparent Caco-2 permeability (nm/sec) (<25 poor, >500 great).

PSA: Polar surface area (7-200).

HOA: Percent human oral absorption (>80% is high <25% is poor).

CNS: Predicted central nervous system activity (-2.0 to + 2.0).

ROF: Rule of five violations (<1).

ROT: Rule of three violations (<1)

SASA: Solvent accessible surface area

QikProp Parameters	QPlog Po/W	QP logS	PSA	QPlog HERG	QPP Caco	QPP MDCK	QP log Khsa	QPlog BB	НОА	CNS	RoF	RoT	SASA	HBA	HBD
7a	4.4	-6.3	87.0	-6.89	954.4	3572.3	0.37	-0.5	1	0	0	1	703.9	3	2
7b	4.74	-6.9	87.0	-6.7	957.6	3590.7	0.5	-0.5	1	0	0	1	736.3	3	2
7c	5.0	-7.2	87.0	-6.8	955.9	9494.4	0.5	-0.3	1	0	2	1	733.0	4	2
7d	4.53	-6.6	95.2	-6.7	952.6	3564.3	0.3	-0.6	1	0	0	1	741.1	4	2
7e	4.92	-7.1	87.0	-6.7	955.1	8819.1	0.4	-0.4	1	0	0	1	727.9	3	2
7f	4.67	-6.7	87.0	-5.5	954.5	6448.1	0.4	-0.4	1	0	0	1	712.8	3	2
7g	4.63	-6.8	122.5	-5.4	52.4	161.4	0.1	-1.6	1	-2	0	1	792.4	5	2
7h	4.9	-7.3	122.5	-5.4	52.5	162.9	0.3	-1.6	1	-2	0	1	825.7	5	2
7 i	5.1	-7.6	122.3	-5.3	52.4	428.0	0.2	-1.4	1	-2	2	1	821.5	6	2
7j	4.7	-7.0	129.8	-5.4	55.7	171.6	0.1	-1.6	1	-2	1	1	827.7	5	2
7k	5.0	-7.5	122.5	-5.4	52.4	398.1	0.2	-1.4	1	-2	2	1	816.4	5	2
71	4.8	-7.1	122.5	-5.3	52.4	291.3	0.2	-1.5	1	-2	0	1	801.3	5	2

FTIR (KBr, cm⁻¹) spectra of compound 3b

FTIR (KBr, cm⁻¹) spectra of compound 6d

FTIR (KBr, cm⁻¹) spectra of compound 6f

FTIR (KBr, cm⁻¹) spectra of compound 7b

FTIR (KBr, cm⁻¹) spectra of compound 7d

FTIR (KBr, cm⁻¹) spectra of compound 7f

FTIR (KBr, cm⁻¹) spectra of compound 7h

FTIR (KBr, cm⁻¹) spectra of compound 7j

FTIR (KBr, cm⁻¹) spectra of compound 7I