Design and Synthesis of coumarin-based amphoteric antimicrobials

with the biofilm interference and immunoregulation effects

Qun Tang^{1,2#}, Haiyang Zhang^{1#}, Kasemsiri Chandarajoti^{3,4}, Zirui Jiao^{1,2}, Lianhua Nie^{1,5}, Sai Lv^{1,2}, Jiakun Zuo¹,

Wen Zhou^{1,2*}, Xiangan Han^{1*}

¹Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China

²Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China

³Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.

⁴Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.

⁵College of Engineering, Shanxi Agricultural University, Taigu 030801, China

[#] These authors contributed equally to this work

^{*} Correspondent. E-mail: zhouwen60@126.com

^{*} Correspondent. E-mail: hanxgan@163.com

Table of Contents

General procedure for preparation of target compound1-2
Spectral data
Spectral spectrum

General procedure for preparation of target compound 2

2 Properly substituted resorcinol (100 mmol) was dissolved in dioxane (100 ml) and ethylpropiolate (100 mmol), and dried zinc chloride (100 mmol) was added. The mixture was refluxed for 24 h. After cooling to room temperature, 100 ml of 5% HCl was added slowly. After addition, the mixture was concentrated to half volume and kept at 4°C. The precipitate was filtered and dried at room temperature. The product (2) was recrystallised from ethanol.

General procedure for preparation of target compound 10

To a stirred mixture of 9 (1.15 mmol) and sodium hydride (138 mg, 5.75 mmol) in 5 ml dry toluene, a solution of the diethyl carbonate (1.15 mmol) in dry toluene was dropped. The mixture was reacted at 0°C for 30 min, then heated to reflux and reacted for another 4 h. The reaction mixture was quenched with water (20 mL) at ice bath and neutralized to pH 7 with 2 N HCl. The precipitate was filtered, washed with cold water and dried to get 10.

General procedure for preparation of target compound 3-5 and 11-13

The appropariate dibromoalkane (1.5 mmol) was added to a solution of hydroxycoumarin (1.5 mmol) and potassium carbonate (3 mmol) in acetone (50 mL) with stirring. The mixture was heated at refluxed and the reaction was monitored by TLC. After cooling, the mixture was separated and the solvent was evaporated. The crude product was Purification by column chromatography to yield compounds **3-5** and **11-13**.

General procedure for preparation of target compound 6-8 and 14-16

The appropariate Amino group (1.5 mmol) was added to a solution of coumarin derivatives (1.5 mmol) and potassium carbonate (3 mmol) in acetone (50 mL) with stirring. The mixture was heated at refluxed and the

reaction was monitored by TLC. After cooling, the mixture was separated and the solvent was evaporated. The crude product was Purification by column chromatography to yield compounds **6-8** and **14-16**.

7-hydroxy-2H-chromen-2-one (2)

¹H NMR (400 MHz, DMSO-d6) δ = 10.54 (s, 1H), 7.91 (d, *J* = 9.5 Hz, 1H), 7.51 (d, *J* = 8.5 Hz, 1H), 6.78 (dd, *J* = 8.5, 2.3 Hz, 1H), 6.71 (d, *J* = 2.2 Hz, 1H), 6.19 (d, *J* = 9.5 Hz, 1H).

7-(4-bromobutoxy)-2H-chromen-2-one (3)

¹H NMR (400 MHz, DMSO) $\delta = 7.98 - 7.95$ (d, J = 12 Hz, 1H), 7.61 - 7.59 (d, 1H), 6.96 - 6.91 (m, 2H), 6.28 - 6.25 (d, J = 12 Hz, 1H), 4.12 - 4.08 (t, J = 8 Hz, 2H), 3.62 - 3.59 (t, J = 6 Hz, 2H), 2.00 - 1.82 (m, 4H). ¹³C NMR (100 MHz, DMSO) $\delta =$ 161.63, 160.17, 155.31, 144.18, 129.36, 112.60, 112.34, 101.08, 67.36, 34.58, 28.90, 27.08. TOF-MS, m/z: [M+H⁺] calculated for C₁₃H₁₃BrO₃, 296.0048, found: 297.0148.

7-((8-bromooctyl)oxy)-2H-chromen-2-one (4)

¹H NMR (400 MHz, DMSO) $\delta = 7.99 - 7.97$ (d, J = 8 Hz, 1H), 7.62 - 7.60 (d, 1H), 6.96 - 6.91 (m, 2H), 6.28 - 6.26 (d, J = 8 Hz, 1H), 4.08 - 4.04 (t, J = 8 Hz, 2H), 3.53 - 3.50 (t, J = 6 Hz, 2H), 1.81 - 1.71 (m, 4H), 1.40 - 1.27 (m, 8H). ¹³C NMR (100 MHz, DMSO) $\delta = 161.83$, 160.23, 155.37, 144.26, 129.39, 112.64, 112.30, 101.06, 68.22, 35.11, 32.16, 28.48, 28.33, 27.98, 27.89, 27.41, 27.37, 25.27. TOF-MS, m/z: [M+H⁺] calculated for C₁₇H₂₁BrO₃, 352.0674, found: 353.0975.

7-((12-bromododecyl)oxy)-2H-chromen-2-one (5)

¹H NMR (400 MHz, CDCl₃) δ = 7.63 – 7.60 (d, *J* = 6 Hz, 1H), 7.35 – 7.33 (d, 1H), 6.83 – 6.78 (m, 2H), 6.23 – 6.21 (d, *J* = 8 Hz, 1H), 4.01 – 3.98 (t, *J* = 8 Hz, 2H), 3.41 – 3.37 (t, *J* = 8 Hz, 2H), 1.87 – 1.76 (m, 4H), 1.47 – 1.28 (m, 16H). ¹³C NMR (100 MHz, DMSO) δ = 162.40, 161.18, 155.89, 144.18, 128.63, 112.93, 112.33, 101.32, 68.63, 33.93, 32.79, 29.44, 29.36, 29.25, 28.93, 28.70, 28.12, 25.89. TOF-MS, m/z: [M+H⁺] calculated for C₂₁H₂₉BrO₃, 408.1300, found: 409.1377.

7-(4-(dimethylamino)butoxy)-2H-chromen-2-one (6a)

¹H NMR (400 MHz, DMSO) δ 7.98 (d, *J* = 9.4 Hz, 1H), 7.61 (d, *J* = 8.6 Hz, 1H), 6.99

- 6.90 (m, 2H), 6.27 (dd, J = 9.5, 1.3 Hz, 1H), 4.08 (t, J = 6.5 Hz, 2H), 1.74 (p, J =
6.7 Hz, 2H), 1.57 (q, J = 7.6 Hz, 2H), 1.42 (d, J = 7.6 Hz, 2H), 0.83 (t, J = 7.3 Hz,
6H). ¹³C NMR (101 MHz, DMSO) δ 162.28, 160.74, 155.87, 144.79, 129.92, 113.16,
112.83, 112.71, 101.57, 68.61, 26.66, 12.09.

7-(4-(diethylamino)butoxy)-2H-chromen-2-one (6b)

¹H NMR (400 MHz, DMSO) δ 8.00 (d, *J* = 9.5 Hz, 1H), 7.64 (d, *J* = 8.6 Hz, 1H), 7.06 – 6.90 (m, 2H), 6.29 (d, *J* = 9.5 Hz, 1H), 4.12 (d, *J* = 5.5 Hz, 2H), 3.10 (q, *J* = 6.9 Hz, 5H), 1.90 – 1.69 (m, 4H), 1.20 (t, *J* = 7.2 Hz, 5H). ¹³C NMR (101 MHz, DMSO) δ 162.13, 160.73, 155.88, 144.80, 130.00, 113.19, 112.96, 112.86, 101.70, 68.15, 50.96, 46.81, 26.06, 20.65, 9.13.

7-(4-(dipropylamino)butoxy)-2H-chromen-2-one (6c)

¹H NMR (400 MHz, DMSO) δ 7.69 – 7.53 (m, 2H), 6.99 (d, J = 15.5 Hz, 1H), 6.50 – 6.39 (m, 2H), 3.96 (t, J = 5.7 Hz, 2H), 3.09 (d, J = 8.0 Hz, 4H), 2.90 (q, J = 6.3, 4.8 Hz, 3H), 2.76 (s, 5H), 2.53 (d, J = 1.1 Hz, 2H), 1.76 (dq, J = 13.1, 7.3, 6.7 Hz, 4H), 1.18 (t, J = 7.2 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ 166.79, 160.98, 158.05, 136.92, 129.94, 115.60, 115.06, 106.58, 102.15, 67.16, 56.76, 42.62, 34.69, 26.13, 21.20.

7-(4-(dibutylamino)butoxy)-2H-chromen-2-one (6d)

¹H NMR (400 MHz, CDCl₃) δ 7.51 (t, J = 9.5 Hz, 1H), 7.25 – 7.19 (m, 1H), 6.75 – 6.58 (m, 2H), 6.13 – 6.02 (m, 1H), 3.91 (dt, J = 9.4, 6.2 Hz, 2H), 2.44 – 2.17 (m, 7H), 1.71 (ddt, J = 15.2, 8.8, 6.5 Hz, 2H), 1.49 (qd, J = 9.2, 8.8, 6.4 Hz, 3H), 1.36 – 1.24 (m, 4H), 1.23 – 1.00 (m, 7H), 0.79 (dt, J = 9.6, 7.3 Hz, 7H). ¹³C NMR (101 MHz, CDCl₃) δ 162.25, 155.76, 143.32, 128.63, 112.71, 112.69, 112.67, 112.65, 112.25, 101.19, 68.41, 53.68, 53.57, 29.12, 26.88, 23.51, 20.58, 13.96.

7-((8-(dimethylamino)octyl)oxy)-2H-chromen-2-one (7a)

¹H NMR (400 MHz, DMSO) δ 7.99 (d, *J* = 9.5 Hz, 1H), 7.62 (d, *J* = 8.5 Hz, 1H), 7.04

- 6.85 (m, 2H), 6.27 (dd, J = 9.4, 1.0 Hz, 1H), 4.06 (t, J = 6.5 Hz, 2H), 2.97 (dd, J = 9.6, 6.6 Hz, 2H), 2.70 (d, J = 1.4 Hz, 4H), 1.77 - 1.55 (m, 3H), 1.47 - 1.19 (m, 7H).
¹³C NMR (101 MHz, DMSO) δ 162.34, 160.77, 155.89, 144.82, 129.97, 113.17, 112.84, 112.72, 101.58, 68.75, 57.19, 42.75, 42.72, 28.93, 28.89, 28.84, 26.33, 25.78, 24.29.

7-((8-(diethylamino)octyl)oxy)-2H-chromen-2-one (7b)

¹H NMR (400 MHz, DMSO) δ 7.99 (d, J = 9.5 Hz, 1H), 7.62 (d, J = 8.5 Hz, 1H), 7.03 – 6.88 (m, 2H), 6.27 (d, J = 9.5 Hz, 1H), 4.06 (t, J = 6.5 Hz, 2H), 3.08 (q, J = 7.2 Hz, 3H), 3.01 – 2.89 (m, 2H), 1.73 (p, J = 6.7 Hz, 1H), 1.60 (dq, J = 11.6, 6.5, 5.6 Hz, 1H), 1.41 – 1.11 (m, 11H). ¹³C NMR (101 MHz, DMSO) δ 162.34, 160.77, 155.88, 144.83, 129.97, 113.17, 112.83, 112.72, 101.57, 68.75, 51.26, 46.68, 41.81, 28.95, 28.91, 28.84, 26.48, 25.78, 23.61, 11.44, 9.07.

7-((8-(dipropylamino)octyl)oxy)-2H-chromen-2-one (7c)

¹H NMR (400 MHz, DMSO) δ 7.97 (d, J = 9.5 Hz, 1H), 7.60 (d, J = 8.6 Hz, 1H), 7.03 – 6.83 (m, 2H), 6.27 (d, J = 9.5 Hz, 1H), 4.05 (t, J = 6.5 Hz, 2H), 2.30 (dt, J = 14.2, 7.1 Hz, 5H), 1.71 (q, J = 6.9 Hz, 2H), 1.37 (dq, J = 14.5, 7.0 Hz, 6H), 1.32 – 1.18 (m, 5H), 0.81 (t, J = 7.3 Hz, 5H). ¹³C NMR (101 MHz, DMSO) δ 162.36, 160.75, 155.90, 144.79, 129.91, 113.15, 112.82, 112.70, 101.56, 68.73, 56.00, 53.95, 29.35, 29.19, 28.86, 27.25, 27.09, 25.84, 20.36, 12.24.

7-((8-(dibutylamino)octyl)oxy)-2H-chromen-2-one (7d)

¹H NMR (400 MHz, DMSO) δ 7.96 (d, J = 9.5 Hz, 1H), 7.58 (d, J = 8.5 Hz, 1H), 7.00 - 6.82 (m, 2H), 6.25 (d, J = 9.5 Hz, 1H), 4.03 (t, J = 6.5 Hz, 2H), 2.28 (t, J = 7.0 Hz, 5H), 1.70 (p, J = 6.7 Hz, 2H), 1.38 (dd, J = 10.9, 4.9 Hz, 2H), 1.35 – 1.17 (m, 13H), 0.83 (t, J = 7.1 Hz, 5H). ¹³C NMR (101 MHz, DMSO) δ 162.33, 144.71, 129.85, 113.05, 112.80, 112.68, 101.49, 68.69, 53.92, 53.63, 29.41, 29.37, 29.23, 28.90, 27.26, 27.13, 25.86, 20.49, 14.32.

7-((12-(dimethylamino)dodecyl)oxy)-2H-chromen-2-one (8a)

¹H NMR (400 MHz, DMSO) δ 7.65 (d, *J* = 15.5 Hz, 1H), 7.55 (d, *J* = 8.4 Hz, 1H), 6.98 (d, *J* = 15.4 Hz, 1H), 6.47 – 6.34 (m, 2H), 3.91 (t, *J* = 6.5 Hz, 3H), 3.10 (s, 3H), 2.90 (s, 3H), 2.74 – 2.67 (m, 2H), 2.54 (s, 4H), 1.67 (q, *J* = 6.9 Hz, 2H), 1.25 (s, 12H). ¹³C NMR (101 MHz, DMSO) δ 166.81, 161.23, 158.04, 136.96, 129.90, 115.42, 114.94, 106.66, 102.01, 67.84, 57.96, 43.64, 34.80, 29.43, 29.40, 29.33, 29.20, 29.11, 29.04, 26.66, 25.93, 25.29.

7-((12-(diethylamino)dodecyl)oxy)-2H-chromen-2-one (8b)

¹H NMR (400 MHz, DMSO) δ 7.99 (d, *J* = 9.5 Hz, 1H), 7.62 (d, *J* = 8.6 Hz, 1H), 7.00 – 6.86 (m, 2H), 6.28 (d, *J* = 9.5 Hz, 1H), 4.06 (t, *J* = 6.5 Hz, 2H), 3.01 (dq, *J* = 51.3, 11.5, 9.4 Hz, 5H), 1.72 (p, *J* = 6.7 Hz, 2H), 1.57 (t, *J* = 7.7 Hz, 2H), 1.43 – 1.11 (m, 19H). ¹³C NMR (101 MHz, DMSO) δ 162.33, 160.75, 144.81, 129.94, 113.16, 112.82, 112.70, 101.57, 68.74, 51.31, 46.69, 29.42, 29.40, 29.37, 29.30, 29.15, 29.01, 28.87, 26.53, 25.87.

7-((12-(dipropylamino)dodecyl)oxy)-2H-chromen-2-one (8c)

¹H NMR (400 MHz, DMSO) δ 7.99 (d, J = 9.5 Hz, 1H), 7.62 (d, J = 8.5 Hz, 1H), 7.05 - 6.82 (m, 2H), 6.28 (d, J = 9.5 Hz, 1H), 4.06 (t, J = 6.5 Hz, 2H), 3.34 (s, 3H), 2.97 (t, J = 8.5 Hz, 4H), 1.81 – 1.52 (m, 6H), 1.40 (t, J = 7.6 Hz, 2H), 1.35 – 1.17 (m, 11H), 0.89 (t, J = 7.3 Hz, 5H). ¹³C NMR (101 MHz, DMSO) δ 162.33, 160.75, 155.87, 144.81, 129.94, 113.15, 112.82, 112.70, 101.57, 68.74, 53.95, 52.51, 29.43, 29.40, 29.37, 29.30, 29.16, 28.99, 28.88, 26.51, 25.87, 11.33.

7-((12-(dibutylamino)dodecyl)oxy)-2H-chromen-2-one (8d)

¹H NMR (400 MHz, DMSO) δ 7.97 (d, J = 9.5 Hz, 1H), 7.60 (d, J = 8.6 Hz, 1H), 7.02 - 6.83 (m, 2H), 6.27 (d, J = 9.5 Hz, 1H), 4.04 (t, J = 6.5 Hz, 2H), 2.38 (s, 4H), 1.71 (p, J = 6.7 Hz, 2H), 1.44 – 1.15 (m, 19H), 0.85 (t, J = 7.2 Hz, 5H). ¹³C NMR (101 MHz, DMSO) δ 162.33, 155.88, 144.76, 129.89, 113.11, 112.81, 112.68, 101.54, 68.71, 55.35, 29.44, 29.42, 29.40, 29.30, 29.16, 28.89, 27.14, 25.87, 20.40, 14.30.

4-hydroxy-2H-chromen-2-one (10)

¹H NMR (400 MHz, DMSO-d6) δ = 12.49 (s, 1H), 7.81 (d, *J* = 7.8 Hz, 1H), 7.62 (t, *J* = 8.4 Hz, 1H), 7.41 – 7.21 (m, 2H), 5.60 (s, 1H).

4-(4-bromobutoxy)-2H-chromen-2-one (11)

¹H NMR (400 MHz, CDCl₃) δ = 7.82 – 7.80 (d, *J* = 8 Hz, 1H), 7.58 – 7.55 (t, 1H), 7.32 – 7.26 (m, 2H), 5.68 (s, 1H), 4.20 – 4.17 (t, *J* = 6 Hz, 2H), 3.54 – 3.51 (t, *J* = 6 Hz, 2H), 2.12 – 2.11 (m, 4H). ¹³C NMR (100 MHz, DMSO) δ = 165.42, 162.76, 153.22, 132.35, 123.84, 122.84, 116.69, 115.54, 90.46, 68.35, 32.78, 29.17, 27.10. TOF-MS, m/z: [M+H⁺] calculated for C₁₃H₁₃BrO₃, 296.0048, found: 297.0098.

4-((8-bromooctyl)oxy)-2H-chromen-2-one (12)

¹H NMR (400 MHz, CDCl₃) δ = 7.82 – 7.80 (d, *J* = 8 Hz, 1H), 7.58 – 7.55 (t, 1H), 7.32 – 7.26 (m, 2H), 5.68 (s, 1H), 4.20 – 4.17 (t, *J* = 6 Hz, 2H), 3.54 – 3.51 (t, *J* = 6 Hz, 2H), 2.12 – 2.11 (m, 4H). ¹³C NMR (100 MHz, DMSO) δ = 165.42, 162.76, 153.22, 132.35, 123.84, 122.84, 116.69, 115.54, 90.46, 68.35, 32.78, 29.17, 27.10. TOF-MS, m/z: [M+H⁺] calculated for C₁₃H₁₃BrO₃, 296.0048, found: 297.0098.

4-((12-bromododecyl)oxy)-2H-chromen-2-one (13)

¹H NMR (400 MHz, CDCl₃) $\delta = 7.84 - 7.82$ (d, J = 8 Hz, 1H), 7.57 - 7.53 (t, 1H), 7.33 - 7.26 (m, 2H), 5.67 (s, 1H), 4.15 - 4.12 (t, J = 6 Hz, 2H), 3.43 - 3.40 (t, J = 6 Hz, 2H), 1.93 - 1.82 (m, 4H), 1.55 - 1.30 (m, 16H). ¹³C NMR (100 MHz, DMSO) $\delta =$ 165.68, 162.99, 153.31, 132.26, 123.77, 122.97, 116.72, 115.80, 90.33, 69.39, 34.02, 32.77, 29.44, 29.42, 29.37, 29.18, 28.71, 28.43, 28.12, 25.90. TOF-MS, m/z: [M+H⁺] calculated for C₂₁H₂₉BrO₃, 408.1300, found: 409.1328.

4-(4-(dimethylamino)butoxy)-2H-chromen-2-one (14a)

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 7.8 Hz, 1H), 7.54 (t, J = 7.9 Hz, 1H), 7.34 – 7.26 (m, 2H), 5.69 (s, 1H), 4.20 (t, J = 5.8 Hz, 2H), 3.47 (d, J = 14.2 Hz, 1H), 3.25 – 3.09 (m, 2H), 2.85 (d, J = 2.6 Hz, 6H), 2.11 (dt, J = 44.1, 7.9 Hz, 4H). ¹³C NMR (101

MHz, CDCl₃) δ 165.37, 162.83, 153.25, 132.57, 124.12, 122.98, 116.78, 115.42, 90.74, 68.13, 57.62, 43.19, 43.16, 25.88, 21.47.

4-(4-(diethylamino)butoxy)-2H-chromen-2-one (14b)

¹H NMR (400 MHz, CDCl₃) δ 7.74 (dd, J = 8.2, 1.6 Hz, 1H), 7.46 (ddd, J = 8.7, 7.3, 1.6 Hz, 1H), 7.24 – 7.16 (m, 2H), 5.63 (s, 1H), 4.15 (t, J = 6.0 Hz, 2H), 3.44 (q, J = 7.2 Hz, 1H), 3.13 (p, J = 7.3 Hz, 5H), 2.14 – 1.89 (m, 4H), 1.37 (dt, J = 18.5, 7.3 Hz, 7H). 13C NMR (101 MHz, CDCl₃) δ 165.50, 162.92, 153.11, 132.46, 124.08, 123.06, 123.02, 116.57, 115.42, 90.55, 68.45, 51.52, 46.85, 26.01, 20.81, 8.88.

4-(4-(dipropylamino)butoxy)-2H-chromen-2-one (14c)

¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, J = 7.9, 1.6 Hz, 1H), 7.48 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.27 – 7.17 (m, 2H), 5.61 (s, 1H), 4.10 (t, J = 6.4 Hz, 2H), 2.49 – 2.39 (m, 2H), 2.38 – 2.28 (m, 4H), 1.88 (dq, J = 8.5, 6.5 Hz, 2H), 1.66 – 1.53 (m, 2H), 1.46 – 1.33 (m, 4H), 0.82 (t, J = 7.4 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 165.65, 162.92, 132.23, 123.75, 122.97, 116.63, 90.30, 69.34, 56.16, 53.64, 26.51, 23.74, 20.18, 11.90.

4-(4-(dibutylamino)butoxy)-2H-chromen-2-one (14d)

¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, J = 7.9, 1.6 Hz, 1H), 7.55 (ddd, J = 8.6, 7.1, 1.6 Hz, 1H), 7.38 – 7.24 (m, 2H), 5.70 (s, 1H), 4.19 (t, J = 5.8 Hz, 2H), 3.46 (d, J = 1.6 Hz, 2H), 2.99 – 2.93 (m, 2H), 2.87 (d, J = 5.4 Hz, 2H), 2.77 (t, J = 8.1 Hz, 3H), 2.02 – 1.85 (m, 4H), 1.62 (ddd, J = 12.3, 9.8, 6.3 Hz, 3H), 1.37 (dq, J = 14.9, 7.5 Hz, 4H), 0.94 (dd, J = 8.0, 6.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 165.58, 163.00, 153.24, 132.46, 123.99, 123.01, 116.71, 115.58, 90.50, 68.76, 53.04, 52.99, 47.70, 27.83, 26.26, 20.39, 20.09, 13.78, 13.49.

4-((8-(dimethylamino)octyl)oxy)-2H-chromen-2-one (15a)

¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.52 (ddd, *J* = 8.6, 7.1, 1.6 Hz, 1H), 7.35 – 7.17 (m, 2H), 5.63 (s, 1H), 4.10 (t, *J* = 6.4 Hz, 2H), 2.71 – 2.57

(m, 2H), 1.87 (m, J = 6.7 Hz, 2H), 1.67 (m, J = 7.3 Hz, 2H), 1.53 – 1.42 (m, 2H), 1.36 (h, J = 5.9, 5.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 165.70, 153.32, 132.32, 123.85, 123.01, 116.74, 90.35, 69.32, 58.88, 44.07, 29.13, 29.03, 28.41, 26.93, 25.84.

4-((8-(diethylamino)octyl)oxy)-2H-chromen-2-one (15b)

¹H NMR (400 MHz, CDCl₃) δ 7.80 (dd, J = 7.9, 1.7 Hz, 1H), 7.53 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.35 – 7.20 (m, 2H), 5.64 (s, 1H), 4.11 (t, J = 6.4 Hz, 2H), 3.13 (q, J = 7.3 Hz, 4H), 3.03 – 2.92 (m, 2H), 1.86 (dp, J = 14.8, 6.8 Hz, 4H), 1.57 – 1.32 (m, 14H). ¹³C NMR (101 MHz, CDCl₃) δ 165.69, 153.30, 132.35, 123.89, 123.01, 116.71, 115.76, 90.35, 69.25, 51.41, 46.62, 28.95, 28.88, 28.36, 26.78, 25.78, 23.28.

4-((8-(dipropylamino)octyl)oxy)-2H-chromen-2-one (15c)

¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, J = 8.0, 1.6 Hz, 1H), 7.51 (ddd, J = 8.7, 7.3, 1.6 Hz, 1H), 7.37 – 7.18 (m, 2H), 5.63 (s, 1H), 4.09 (t, J = 6.4 Hz, 2H), 2.46 – 2.27 (m, 7H), 1.98 – 1.80 (m, 2H), 1.60 – 1.21 (m, 17H), 0.84 (t, J = 7.4 Hz, 7H). ¹³C NMR (101 MHz, CDCl₃) δ 165.67, 132.24, 123.77, 122.97, 116.69, 115.80, 90.31, 69.39, 56.22, 54.19, 29.43, 29.21, 28.44, 27.49, 27.01, 25.89, 20.12, 20.10, 11.97.

4-((8-(dibutylamino)octyl)oxy)-2H-chromen-2-one (15d)

¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, J = 7.9, 1.6 Hz, 1H), 7.49 (ddd, J = 8.7, 7.3, 1.6 Hz, 1H), 7.31 – 7.16 (m, 2H), 5.62 (s, 1H), 4.08 (t, J = 6.4 Hz, 2H), 2.46 – 2.29 (m, 5H), 1.95 – 1.79 (m, 2H), 1.54 – 1.17 (m, 15H), 0.87 (t, J = 7.3 Hz, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 165.66, 162.93, 132.23, 123.76, 122.97, 116.66, 90.29, 69.38, 54.11, 53.83, 29.42, 29.20, 29.04, 28.43, 27.48, 26.92, 25.88, 20.74, 14.06.

4-((12-(dimethylamino)dodecyl)oxy)-2H-chromen-2-one (16a)

¹H NMR (400 MHz, DMSO) δ 7.65 (d, J = 15.5 Hz, 1H), 7.55 (d, J = 8.4 Hz, 1H), 6.98 (d, J = 15.4 Hz, 1H), 6.42 (t, J = 1.9 Hz, 2H), 3.91 (t, J = 6.5 Hz, 3H), 3.10 (s, 3H), 2.90 (s, 3H), 2.71 (s, 2H), 2.54 (s, 4H), 1.68 (m, J = 6.7 Hz, 2H), 1.26 (d, J = 8.5 Hz, 12H). ¹³C NMR (101 MHz, DMSO) δ 166.81, 161.23, 158.04, 136.96, 129.90,

115.42, 114.94, 106.66, 102.01, 67.84, 57.96, 43.64, 34.80, 29.43, 29.40, 29.33, 29.20, 29.11, 29.04, 26.66, 25.93, 25.29.

4-((12-(diethylamino)dodecyl)oxy)-2H-chromen-2-one (16b)

¹H NMR (400 MHz, DMSO) δ 7.99 (d, *J* = 9.5 Hz, 1H), 7.62 (d, *J* = 8.6 Hz, 1H), 7.00 – 6.86 (m, 2H), 6.28 (d, *J* = 9.5 Hz, 1H), 4.06 (t, *J* = 6.5 Hz, 2H), 3.01 (dq, *J* = 51.3, 11.5, 9.4 Hz, 5H), 1.71 (q, *J* = 6.9 Hz, 2H), 1.57 (t, *J* = 7.7 Hz, 2H), 1.43 – 1.11 (m, 19H). ¹³C NMR (101 MHz, DMSO) δ 162.33, 160.75, 144.81, 129.94, 113.16, 112.82, 112.70, 101.57, 68.74, 51.31, 46.69, 29.42, 29.40, 29.37, 29.30, 29.15, 29.01, 28.87, 26.53, 25.87.

4-((12-(dipropylamino)dodecyl)oxy)-2H-chromen-2-one (16c)

¹H NMR (400 MHz, DMSO) δ 7.99 (d, J = 9.5 Hz, 1H), 7.62 (d, J = 8.5 Hz, 1H), 7.05 – 6.82 (m, 2H), 6.28 (d, J = 9.5 Hz, 1H), 4.06 (t, J = 6.5 Hz, 2H), 3.34 (s, 3H), 2.96 (t, J = 8.6 Hz, 4H), 1.81 – 1.52 (m, 6H), 1.45 – 1.19 (m, 13H), 0.89 (t, J = 7.3 Hz, 5H). ¹³C NMR (101 MHz, DMSO) δ 162.33, 160.75, 155.87, 144.81, 129.94, 113.15, 112.82, 112.70, 101.57, 68.74, 53.95, 52.51, 29.43, 29.40, 29.37, 29.30, 29.16, 28.99, 28.88, 26.51, 25.87, 11.33.

4-((12-(dibutylamino)dodecyl)oxy)-2H-chromen-2-one (16d)

¹H NMR (400 MHz, DMSO) δ 7.97 (d, J = 9.5 Hz, 1H), 7.60 (d, J = 8.6 Hz, 1H), 7.02 - 6.83 (m, 2H), 6.27 (d, J = 9.5 Hz, 1H), 4.04 (t, J = 6.5 Hz, 2H), 2.38 (s, 4H), 1.71 (m, J = 6.7 Hz, 2H), 1.52 - 1.16 (m, 20H), 0.85 (t, J = 7.2 Hz, 5H). ¹³C NMR (101 MHz, DMSO) δ 162.33, 160.72, 155.88, 144.76, 129.89, 113.11, 112.81, 112.68, 101.54, 68.71, 55.35, 29.44, 29.42, 29.40, 29.30, 29.16, 28.89, 25.87, 20.40, 14.30.

Fig.S6 ¹H NMR of 5 (400 MHz, CDCl₃)

Fig.S8 ¹H NMR of 6a (400 MHz, DMSO)

Fig.S10 ¹H NMR of 6b (400 MHz, DMSO)

Fig.S12 ¹H NMR of 6c (400 MHz, DMSO)

Fig.S14 ¹H NMR of 6d (400 MHz, CDCl₃)

Fig.S15 ¹³C NMR of 6d (400 MHz, CDCl₃)

Fig.S18 ¹H NMR of 7b (400 MHz, DMSO)

Fig.S19 ¹³C NMR of 7b (400 MHz, DMSO)

Fig.S22 ¹H NMR of 7d (400 MHz, DMSO)

Fig.S25 ¹³C NMR of 8a (400 MHz, DMSO)

Fig.S26 ¹H NMR of 8b (400 MHz, DMSO)

Fig.S30 ¹H NMR of 8d (400 MHz, DMSO)

Fig.S31 ¹³C NMR of 8d (400 MHz, DMSO)

Fig.S34 ¹³C NMR of 11 (100 MHz, CDCl₃)

Fig.S38 ¹³C NMR of **13** (100 MHz, CDCl₃)

Fig.S40 ¹³C NMR of 14a (100 MHz, CDCl₃)

Fig.S42 ¹³C NMR of 14b (100 MHz, CDCl₃)

Fig.S44 ¹³C NMR of 14c (100 MHz, CDCl₃)

Fig.S45 ¹H NMR of 14d (400 MHz, CDCl₃)

Fig.S46 ¹³C NMR of 14d (100 MHz, CDCl₃)

Fig.S48 ¹³C NMR of 15a (100 MHz, CDCl₃)

Fig.S50 ¹³C NMR of 15b (100 MHz, CDCl₃)

Fig.S52 ¹³C NMR of 15c (400 MHz, CDCl₃)

Fig.S53 ¹H NMR of 15d (400 MHz, CDCl₃)

Fig.S54 ¹³C NMR of 15d (400 MHz, CDCl₃)

Fig.S56 ¹³C NMR of 16a (400 MHz, DMSO)

Fig.S58 ¹³C NMR of 16b (400 MHz, DMSO)

Fig.S60 ¹³C NMR of 16c (400 MHz, DMSO)

Fig.S62 ¹³C NMR of 16d (400 MHz, DMSO)