Structure-activity relationship expansion and microsomal stability assessment of the 2-morpholinobenzoic acid scaffold as antiproliferative phosphatidylcholine-specific phospholipase C inhibitors

Supplementary Information Part 2: In silico experimental results

Shaun W. P. Rees^a, Tayla A. Rees^{b,c}, Emily K. Paulin^a, Olivia R. Arnerich^{a,d}, Euphemia Leung^{c,e}, Christopher S. Walker^{b,c}, David Barker^{a,d*}, Lisa I. Pilkington^{a,f*}

^a School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand

^b School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand

^c Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand.

^d MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand

^e Auckland Cancer Society Research Centre, University of Auckland, Grafton, Auckland 1023, New Zealand

^f Te Pūnaha Matatini, Auckland 1142, New Zealand.

*Corresponding author. Email: <u>d.barker@auckland.ac.nz</u> (D.B), <u>lisa.pilkington@auckland.ac.nz</u> (L.I.P).

Table of Contents:

Molecular modelling scores of synthesised compounds	S2
Binding poses of selected compounds 1a , 11e , and 20e within the active site of PC-PLC _{BC}	S5
Tanimoto similarity coefficients of hydroxamic acid-containing compounds	S7
ADMET data of all synthesised compounds	S9
References	S16

List of Tables

Table S1. Docking scores of series 10 compounds (1,2,4-carboxylic esters)	S2
Table S2. Docking scores of series 11 compounds (1,2,4-carboxylic acids)	S2
Table S3. Docking scores of series 12 compounds (1,2,4-hydroxamic acids).	S3
Table S4. Docking scores of series 19 compounds (THP esters).	S3
Table S5. Docking scores of series 20 compounds (THP carboxylic acids)	S3
Table S6. Docking scores of series 21 compounds (THP carboxylic acids)	S4
Table S7. Docking scores of <i>N</i> -methylated compounds and positive control D609	S4
Table S8. Tanimoto scores of series 12 compounds compared to known HDAC inhibitors	S7
Table S9. Tanimoto scores of series 21 compounds compared to known HDAC inhibitors	S8
Table S10. Computed physicochemical properties of all synthesised compounds	S10
Table S11. Scores of common ADMET properties calculated for all synthesised compounds.	S12
Table S12. Interactions and distances between 1b and PC-PLC _{BC} .	S14
Table S13. Interactions and distances between 1b and active waters of PC-PLC _{BC}	S15
Table S14. Interactions and distances between 20h and PC-PLC _{BC} as compared with 1b	S15
Table S15. Interactions and distances between 20h and active waters of PC-PLC _{BC}	S16

List of Figures

Figure S1. Predicted binding pose of compound 1a within the active site of PC-PLC _{BC}	S5
Figure S2. Predicted binding pose of 2-morpholinobenzoic acid derivatives	S6
Figure S3. Structures of FDA-approved HDAC inhibitors.	S7
Figure S4. Comparison of binding conformations with alkyl ring modification.	S14
Figure S5. Interactions and distances between 1b and PC-PLC _{BC} .	S14
Figure S6. Interactions and distances between 20h and PC-PLC _{BC} .	S15

Molecular modelling scores of synthesised compounds

Goldscore van der Waals (vdW) and hydrogen bonding (Hbond) scores are weighted terms in all tables.

 Table S1. Docking scores of series 10 compounds (1,2,4-carboxylic esters) using genetic algorithms available in GOLD suite.

Compound	ChemPLP			(Goldscore			Chemscor	e	ASP
Compound	Fitness	Hbond	Metal	Fitness	vdW	Hbond	Fitness	ΔG	Hbond	Fitness
Н (а)	74.97	1.00	1.00	60.99	45.69	19.83	32.73	-38.07	-2.11	42.09
2-F (b)	72.14	1.00	1.00	54.24	50.08	6.47	31.57	-33.37	-3.32	46.83
3-F (c)	79.13	0.00	1.74	56.51	54.47	4.79	30.87	-39.04	0.00	45.90
4-F (d)	78.56	0.00	1.73	55.83	53.40	4.85	33.17	-35.67	-2.14	45.70
2-Cl (e)	72.62	0.96	0.99	57.18	53.63	5.73	33.48	-34.59	-3.27	42.54
3-Cl (f)	74.65	0.00	1.85	58.10	54.56	5.24	33.06	-37.57	-2.21	44.13
4-Cl (g)	72.64	0.33	1.00	56.62	48.98	10.45	32.56	-39.50	0.00	44.45
2-Br (h)	74.46	0.98	1.00	58.44	50.04	12.68	31.44	-33.67	-2.83	41.53
3-Br (i)	80.33	0.00	1.93	57.92	49.98	11.30	33.71	-40.60	0.00	44.78
4-Br (j)	78.70	0.00	1.92	54.73	44.55	14.34	33.55	-40.50	0.00	43.92
2-OMe (k)	73.08	0.33	1.00	56.81	54.61	5.21	32.26	-33.26	-3.24	44.77
3-0Me (I)	79.88	0.00	1.89	59.14	53.73	10.70	34.12	-37.80	-4.09	46.00
4-0Me (m)	78.86	0.67	1.21	53.88	48.79	8.91	30.79	-38.72	0.00	46.93

 Table S2. Docking scores of series 11 compounds (1,2,4-carboxylic acids) using genetic algorithms available in GOLD suite.

Compound	ChemPLP			(Goldscore			Chemsco	re	ASP
Compound	Fitness	Hbond	Metal	Fitness	vdW	Hbond	Fitness	ΔG	Hbond	Fitness
H (a)	115.92	1.00	7.81	83.69	41.16	46.32	44.44	-54.87	-3.33	49.05
2-F (b)	111.01	1.30	7.82	82.84	40.42	46.46	43.08	-53.62	-3.34	47.22
3-F (c)	115.55	1.00	7.82	82.99	40.67	46.68	42.62	-52.80	-3.34	48.88
4-F (d)	116.56	1.00	7.82	81.68	39.49	46.30	44.15	-53.47	-3.34	48.49
2-Cl (e)	116.76	1.00	7.87	82.09	41.02	46.03	45.81	-56.35	-5.28	50.01
3-Cl (f)	117.10	1.00	7.78	81.87	40.25	46.74	44.17	-54.76	-3.34	48.01
4-Cl (g)	117.63	1.00	7.86	81.98	42.48	45.57	43.40	-53.25	-3.71	47.92
2-Br (h)	114.26	1.00	7.82	83.13	44.35	47.86	45.38	-54.34	-3.34	42.07
3-Br (i)	116.05	1.00	7.84	85.50	43.23	46.45	44.55	-53.67	-3.34	48.43
4-Br (j)	117.80	1.00	7.78	80.36	40.57	46.99	43.82	-55.61	-3.28	46.94
2-OMe (k)	114.07	0.99	7.88	84.95	42.43	46.44	43.30	-53.15	-3.34	48.98
3-0Me (I)	114.35	1.00	7.87	84.76	41.54	47.04	43.29	-53.92	-3.32	51.02
4-0Me (m)	118.27	1.00	7.90	84.01	44.31	46.33	44.46	-54.53	-3.33	49.02

Commonwed		ChemPLP		(Goldscore			hemscor	e	ASP
Compound	Fitness	Hbond	Metal	Fitness	vdW	Hbond	Fitness	ΔG	Hbond	Fitness
H (a)	89.82	0.02	2.95	81.08	53.98	29.15	48.25	-57.48	-9.56	64.73
2-F (b)	92.57	1.30	2.53	79.08	48.63	35.19	45.85	-54.78	-7.40	69.66
3-F (c)	89.90	0.75	2.62	80.03	48.82	35.56	45.69	-54.56	-6.46	69.79
4-F (d)	98.85	1.48	2.22	78.70	47.71	35.80	47.80	-55.66	-6.04	70.63
2-Cl (e)	95.69	1.00	2.72	81.31	54.15	30.88	48.34	-57.12	-8.75	68.99
3-Cl (f)	94.12	1.02	2.73	80.23	49.21	36.00	46.90	-56.24	-6.39	68.13
4-Cl (g)	94.47	0.81	2.64	80.60	49.19	35.87	48.56	-56.89	-7.73	67.72
2-Br (h)	89.84	1.15	2.94	79.18	48.98	34.50	47.55	-55.23	-6.76	68.17
3-Br (i)	95.56	1.01	2.63	80.24	50.68	34.38	45.55	-55.29	-6.43	67.65
4-Br (j)	95.56	1.01	2.63	80.24	50.68	34.38	45.55	-55.29	-6.43	67.65
2-OMe (k)	90.28	0.53	2.95	78.65	48.45	34.78	48.12	-55.81	-8.58	68.62
3-0Me (I)	97.35	1.33	2.42	81.27	50.27	35.35	46.07	-57.13	-8.84	68.87
4-0Me (m)	90.80	0.64	2.34	78.95	50.28	32.90	46.31	-56.26	-6.76	66.76

 Table S3. Docking scores of series 12 compounds (1,2,4-hydroxamic acids) using genetic algorithms available in GOLD suite.

Table S4. Docking scores of series 19 compounds (THP esters) using genetic algorithms available in GOLD suite.

Compound		ChemPLP			Goldscore	е	C	hemscor	е	ASP
Compound	Fitness	Hbond	Metal	Fitness	vdW	Hbond	Fitness	ΔG	Hbond	Fitness
H (a)	72.05	1.00	0.00	60.74	52.59	11.99	30.71	-33.76	-3.31	46.01
2-F (b)	74.44	0.97	0.00	60.14	52.46	11.96	32.05	-34.01	-4.01	47.20
3-F (c)	75.46	1.00	0.00	61.19	54.27	10.67	32.08	-35.71	-2.18	46.11
4-F (d)	75.15	1.00	0.00	61.74	53.94	11.00	33.06	-34.85	-6.01	45.72
2-Cl (e)	71.96	0.00	1.97	62.90	56.40	11.23	34.90	-38.00	-3.88	41.91
3-Cl (f)	71.99	0.96	0.00	62.91	55.41	11.70	33.81	-38.73	-1.08	45.00
4-Cl (g)	72.64	1.00	0.00	58.46	52.25	11.12	34.40	-37.66	-4.01	46.84
2-Br (h)	71.20	0.00	1.93	62.81	59.92	8.54	34.44	-37.89	-3.98	40.59
3-Br (i)	74.62	1.00	0.00	62.26	54.72	12.21	33.70	-36.05	-4.65	45.67
4-Br (j)	73.57	1.00	0.00	64.29	54.86	12.88	33.70	-38.15	-1.11	45.26
2-OMe (k)	70.71	0.00	1.94	61.00	55.29	9.21	32.06	-33.62	-4.09	41.81
3-0Me (I)	73.37	0.95	0.00	61.13	55.09	11.31	34.45	-36.76	-5.73	47.93
4-0Me (m)	74.17	1.00	0.00	58.01	56.23	5.37	28.69	-30.01	-3.18	49.60

Table S5. Docking scores of series 20 compounds (THP carboxylic acids) using genetic algorithms available in GOLD suite.

Compound	ChemPLP			(Goldscore			Chemscore		
compound	Fitness	Hbond	Metal	Fitness	vdW	Hbond	Fitness	ΔG	Hbond	Fitness
H (a)	111.43	1.90	7.65	68.87	35.14	37.87	39.93	-52.65	-3.62	44.96
2-F (b)	109.20	1.72	6.93	77.08	41.89	39.39	40.40	-52.12	-4.29	49.11
3-F (c)	109.60	1.14	6.16	80.71	44.77	38.73	38.72	-49.49	-3.89	48.93
4-F (d)	111.92	1.78	6.93	71.14	38.99	36.40	40.25	-54.34	-3.88	48.81
2-Cl (e)	104.38	1.10	7.55	85.65	50.26	38.82	40.17	-52.50	-4.14	48.09
3-Cl (f)	111.47	1.84	5.79	78.60	44.72	37.58	43.12	-54.42	-4.84	48.53
4-Cl (g)	107.92	1.06	6.44	81.06	42.14	42.72	42.05	-55.77	-4.36	48.31
2-Br (h)	109.76	1.49	7.38	82.16	48.77	40.61	42.98	-57.16	-4.50	44.88
3-Br (i)	111.44	1.76	7.53	79.40	45.20	38.22	42.01	-55.03	-3.35	47.35
4-Br (j)	110.79	1.71	6.72	78.73	44.10	39.31	42.86	-57.49	-5.44	48.52
2-OMe (k)	105.31	1.53	6.28	83.75	44.70	40.83	38.22	-50.66	-5.49	46.66
3-0Me (I)	112.86	1.65	6.22	75.71	42.92	36.43	40.13	-52.39	-3.58	45.42
4-0Me (m)	107.64	1.38	5.71	83.21	46.04	39.63	40.19	-51.31	-5.90	49.35

Compound	ChemPLP				Goldscore			hemscor	e	ASP
Compound	Fitness	Hbond	Metal	Fitness	vdW	Hbond	Fitness	ΔG	Hbond	Fitness
H (a)	102.01	1.42	2.79	71.65	46.93	29.56	50.37	-58.68	-8.82	70.54
2-F (b)	101.58	1.62	2.57	76.94	53.72	30.14	45.72	-56.61	-8.14	71.01
3-F (c)	102.03	1.52	2.84	76.48	53.24	29.41	46.55	-57.01	-7.72	71.74
4-F (d)	105.99	1.70	2.87	76.58	53.01	29.49	48.03	-56.65	-7.86	70.66
2-Cl (e)	99.21	1.87	2.54	79.16	55.64	25.89	51.31	-59.96	-9.00	68.16
3-Cl (f)	101.43	2.31	3.14	76.92	54.98	28.85	49.64	-57.25	-7.06	69.81
4-Cl (g)	102.00	1.56	2.77	86.72	53.84	35.90	51.58	-60.61	-9.16	71.34
2-Br (h)	99.38	1.80	2.74	79.17	52.64	31.10	47.80	-58.78	-7.66	69.55
3-Br (i)	103.02	1.58	2.84	76.22	50.63	29.99	48.24	-58.44	-8.41	70.13
4-Br (j)	102.11	1.63	2.72	84.94	53.34	36.42	50.62	-58.12	-7.21	70.24
2-OMe (k)	95.12	2.24	3.09	85.56	55.28	36.86	45.80	-57.31	-7.75	68.66
3-0Me (I)	98.99	1.63	2.91	91.78	57.95	36.38	47.37	-56.25	-6.78	69.24
4-0Me (m)	104.80	1.98	2.54	86.73	54.44	34.78	46.31	-56.26	-6.76	72.14

 Table S6. Docking scores of series 21 compounds (THP carboxylic acids) using genetic algorithms available in GOLD suite.

Table S7. Docking scores of *N*-methylated compounds and positive control D609 using genetic algorithms available in GOLD suite.

	ChemPLP			Goldscore			Chemscore			ASP
Compound	Fitness	H bond	Metal	Fitness	vdW	Hbond	Fitness	ΔG	H bond	Fitness
D609	63.46	0.97	3.85	89.34	41.56	49.73	35.11	-38.69	-3.32	27.55
CA (24)	108.74	1.87	7.23	81.98	49.95	37.71	42.60	-49.84	-18.96	46.20
Ester (23)	76.09	0.00	2.91	60.29	49.61	12.75	33.45	-42.93	0.00	41.53
HA (25)	97.14	2.00	2.48	73.20	50.25	27.16	47.59	-60.17	-9.00	67.76

CA = carboxylic acid, HA = hydroxamic acid

Binding poses of selected compounds 1a, 11e, and 20e within the active site of $PC-PLC_{BC}$

Figure S1. Predicted binding pose of compound **1a** within the active site of PC-PLC_{BC} (PDB ID: 1AH7, 1.50 Å)¹ represented by a solvent ionizability surface. Blue areas represent basic residues, red areas represent acidic residues and white indicates neutral. Compound **1a** is represented by stick structure coloured by atom type.

Figure S2. Predicted binding pose of 2-morpholinobenzoic acid derivatives within the active site of PC-PLC_{BC} (PDB ID: 1AH7, 1.50 Å)¹ represented by a solvent ionizability surface. Blue areas represent basic residues, red areas represent acidic residues and white indicates neutral. *Top:* Compound **11e**; *bottom*: compound **20e**.

Tanimoto similarity coefficients of hydroxamic acid-containing compounds

Figure S3. Structures of FDA-approved HDAC inhibitors.²

Table S8. Tanimoto scores of series **12** compounds compared to known HDAC inhibitors representing structural similarity. A score of 0 indicates no similarity and 1 indicates identical molecules. Values were calculated using R Statistical Software (v4.4.2) and the rcdk R package (v3.8.1).^{3,4}

Compound		Tanimoto Score	
Compound	Vorinostat	Belinostat	Panobinostat
12a	0.241	0.188	0.155
12b	0.202	0.170	0.130
12c	0.169	0.154	0.127
12d	0.163	0.137	0.152
12e	0.198	0.167	0.128
12f	0.182	0.154	0.127
12g	0.179	0.150	0.153
12h	0.188	0.182	0.130
12i	0.170	0.155	0.128
1 2 j	0.163	0.137	0.142
12k	0.191	0.162	0.144
121	0.187	0.159	0.132
12m	0.170	0.133	0.148
Summary statistics			
Min	0.163	0.133	0.127
1 st Qu.	0.171	0.150	0.128
Median	0.182	0.155	0.132
Mean	0.185	0.158	0.138
3 rd Qu.	0.191	0.167	0.148
Max	0.241	0.188	0.155

Compound		Tanimoto Score	
Compound –	Vorinostat	Belinostat	Panobinostat
21a	0.188	0.186	0.143
21b	0.167	0.170	0.121
21c	0.161	0.152	0.117
21d	0.195	0.136	0.140
21e	0.182	0.165	0.118
21f	0.174	0.154	0.118
21g	0.184	0.147	0.140
21h	0.169	0.178	0.119
21 i	0.161	0.154	0.118
2 1j	0.187	0.136	0.130
21k	0.185	0.159	0.132
211	0.169	0.157	0.122
21 m	0.169	0.132	0.137
Summary statistics			
Min	0.161	0.132	0.117
1 st Qu.	0.169	0.147	0.118
Median	0.182	0.154	0.122
Mean	0.181	0.156	0.127
3 rd Qu.	0.187	0.165	0.137
Max	0.238	0.186	0.143

Table S9. Tanimoto scores of series **21** compounds compared to known HDAC inhibitors representing structural similarity. A score of 0 indicates no similarity and 1 indicates identical molecules. Values were calculated using R Statistical Software (v4.4.2) and the rcdk R package (v3.8.1).

ADMET data of all synthesised compounds

Physicochemical properties that have been linked to favourable drug profiles were calculated using ADMETIab 3.0⁵ and the results are reported in table S6, SI part 2. All compounds satisfied Lipinski and Veber criteria of drug-likeness and no compounds were identified as pan-assay interference compounds (PAINS).^{6–9} The criteria for drug-likeness required molecular weights of \leq 500 Da, logP \leq 5, hydrogen bond donors \leq 5, and hydrogen bond acceptors \leq 10 to satisfy Lipinski's rules.^{7,8} Veber contributed new criteria of rotatable bonds \leq 10, and polar surface area \leq 140 Å².⁹

LogD_{7.4} was included to represent distribution at physiological pH, which is particularly relevant for compounds containing carboxylic acid motifs. Calculations of pKa were first carried out and it was found that all of series **11** and **20** compounds values were < 7.4, indicating these compounds are in an ionised state under physiological conditions and therefore the logD value should be considered over logP when evaluating ADMET profiles.

All compounds satisfied lipophilicity criteria (all values <5) when considering both logP and logD. Additional criteria for logS and logD were considered from more literary references to define optimal space in these areas, being -1 to -5 for logS¹⁰ and 1 to 3 for logD¹¹. Compounds falling outside of these ranges are indicated by ^{*a*} in table S6. Violations of the range for logD was shown in series **10** and **19**, with values >3, but only to a maximum of 3.61 for compound **10e** and 3.79 for **19j**. None of these compounds had pKa values less than pH 7.4 so logD requirements are of lesser relevance in these cases but are lower, and therefore more favourable, than their logP values. LogS criteria were not met in **12j** and seven of the series **19** compounds (**19c**, **19e-j**), these results are more varied but mostly include THP methyl esters. The 4-bromo substituent also appears to be less favourable for drug-likeness owing to higher lipophilicity and lower aqueous solubility, but this was not the case in all of the synthesised series. It is worth noting that these ranges are considered optimal regions based off known drugs, and greater variability is tolerated for earlier stages in the drug development process.

Compound	MW (Da)	nHA	nHD	TPSA (Ų)	nRot	logS	logD	logP
10a	326.16	5	1	50.8	6	-3.96	3.30 ^a	3.34
10b	344.15	5	1	50.8	6	-4.44	3.54ª	3.75
10c	344.15	5	1	50.8	6	-4.62	3.36 ^a	3.68
10d	344.15	5	1	50.8	6	-4.55	3.33 ^a	3.60
10e	360.12	5	1	50.8	6	-4.58	3.61 ^{<i>a</i>}	3.89
10f	360.12	5	1	50.8	6	-4.81	3.54 ^{<i>a</i>}	3.99
10g	360.12	5	1	50.8	6	-4.89	3.48 ^a	4.03
10h	404.07	5	1	50.8	6	-4.38	3.54 ^{<i>a</i>}	3.89
10i	404.07	5	1	50.8	6	-4.76	3.40 ^a	3.97
10j	404.07	5	1	50.8	6	-4.97	3.36 ^a	4.01
10k	356.17	6	1	60.03	7	-4.21	3.38 ^a	3.38
10	356.17	6	1	60.03	7	-4.14	3.22 ^{<i>a</i>}	3.31
10m	356.17	6	1	60.03	7	-4.08	3.13 ^a	3.26
11a	312.15	5	2	61.8	5	-3.35	2.32	3.12
11b	330.14	5	2	61.8	5	-3.90	2.64	3.28
11c	330.14	5	2	61.8	5	-3.92	2.70	3.39
11d	330.14	5	2	61.8	5	-3.94	2.64	3.24
11e	346.11	5	2	61.8	5	-3.86	2.60	3.79
11f	346.11	5	2	61.8	5	-3.88	2.60	3.89
11g	346.11	5	2	61.8	5	-3.96	2.52	3.91
11h	390.06	5	2	61.8	5	-3.80	2.56	3.76
11i	390.06	5	2	61.8	5	-3.76	2.53	3.90
11j	390.06	5	2	61.8	5	-3.86	2.52	3.98
11k	342.16	6	2	71.03	6	-3.46	2.29	2.88
11	342.16	6	2	71.03	6	-3.92	2.42	3.02
11m	342.16	6	2	71.03	6	-3.56	2.29	2.70
12a	327.16	6	3	73.83	6	-3.54	1.81	1.59
12b	345.15	6	3	73.83	6	-3.98	2.09	1.99
12c	345.15	6	3	73.83	6	-3.94	2.09	1.85
12d	345.15	6	3	73.83	6	-3.78	1.95	1.68
12e	361.12	6	3	73.83	6	-4.63	2.41	2.59
12f	361.12	6	3	73.83	6	-4.86	2.38	2.63
12g	361.12	6	3	73.83	6	-4.91	2.33	2.61
12h	405.07	6	3	73.83	6	-4.59	2.27	2.42
1 2 i	405.07	6	3	73.83	6	-4.92	2.24	2.48
12j	405.07	6	3	73.83	6	-5.05ª	2.28	2.62
12k	357.17	7	3	83.06	7	-3.70	1.91	1.62
12	357.17	7	3	83.06	7	-4.07	1.97	1.72
12m	357.17	7	3	83.06	7	-3.97	1.84	1.55
19a	325.17	4	1	47.56	6	-4.49	3.37ª	3.58
19b	343.16	4	1	47.56	6	-4.66	3.46 ^a	3.94
					-		-	

Table S10. Computed physicochemical properties of all synthesised compounds which fall under Lipinski-Veber criteria of drug-like compounds.^{8,9} Values were calculated using ADMETlab 3.0.⁵

19c	343.16	4	1	47.56	6	-5.08 ^a	3.51 ^a	4.09
19d	343.16	4	1	47.56	6	-4.87	3.46 ^{<i>a</i>}	3.90
19e	359.13	4	1	47.56	6	-5.19 ^a	3.67ª	4.23
19f	359.13	4	1	47.56	6	-5.40 ^a	3.69 ^a	4.37
19g	359.13	4	1	47.56	6	-5.39 ^a	3.73 ^a	4.40
19h	403.08	4	1	47.56	6	-5.04 ^a	3.61 ^a	4.16
19i	403.08	4	1	47.56	6	-5.40 ^a	3.71 ^{<i>a</i>}	4.38
19j	403.08	4	1	47.56	6	-5.53 ^a	3.79 ^a	4.41
19k	355.18	5	1	56.79	7	-4.61	3.38 ^a	3.50
19l	355.18	5	1	56.79	7	-4.85	3.45 ^{<i>a</i>}	3.64
19m	355.18	5	1	56.79	7	-4.72	3.40 ^a	3.50
20a	311.15	4	2	58.56	5	-3.61	2.53	3.42
20b	329.14	4	2	58.56	5	-4.09	2.86	3.93
20c	329.14	4	2	58.56	5	-4.12	2.90	3.95
20d	329.14	4	2	58.56	5	-4.12	2.90	3.93
20e	345.11	4	2	58.56	5	-3.98	2.79	4.04
20f	345.11	4	2	58.56	5	-3.95	2.84	4.16
20g	345.11	4	2	58.56	5	-3.93	2.87	4.21
20h	389.06	4	2	58.56	5	-3.99	2.78	4.08
20i	389.06	4	2	58.56	5	-3.89	2.83	4.28
20j	389.06	4	2	58.56	5	-3.92	2.83	4.33
20k	341.16	5	2	67.79	6	-3.82	2.55	3.29
201	341.16	5	2	67.79	6	-3.85	2.66	3.28
20m	341.16	5	2	67.79	6	-3.53	2.54	3.00
21 a	326.16	5	3	70.59	6	-3.56	1.99	1.80
21b	344.15	5	3	70.59	6	-4.05	2.34	2.26
21c	344.15	5	3	70.59	6	-4.11	2.37	2.19
21d	344.15	5	3	70.59	6	-3.92	2.27	2.07
21 e	360.12	5	3	70.59	6	-4.66	2.60	2.58
21f	360.12	5	3	70.59	6	-4.87	2.69	2.73
21g	360.12	5	3	70.59	6	-4.75	2.74	2.75
21h	404.07	5	3	70.59	6	-4.61	2.47	2.43
21 i	404.07	5	3	70.59	6	-4.88	2.66	2.68
2 1j	404.07	5	3	70.59	6	-4.94	2.70	2.73
21k	356.17	6	3	79.82	7	-3.77	2.07	1.87
21	356.17	6	3	79.82	7	-3.93	2.09	1.85
21m	356.17	6	3	79.82	7	-3.63	1.99	1.66
23	374.14	5	0	42.01	6	-4.70	3.76 <i>ª</i>	4.02
24	360.12	5	1	53.01	5	-4.28	2.66	3.73
25	375.13	6	2	65.04	6	-4.51	2.63	2.69

Heading abbreviations: MW = molecular weight; nHA = number of hydrogen bond acceptors; nHD = number of hydrogen bond donors; TPSA = topological polar surface area; nRot = number of rotatable bonds.

^a Outside of optimal range (logS -1 to -5, logD 1 to 3)

Table S11. Scores of common ADMET properties calculated for all synthesised compounds. Data were calculated using ADMETlab 3.0.⁵ Values of columns 3-6 are probability scores with a range from 0 to 1 on a probability scale; values of column 2 are on a logarithmic scale.

Compound	Caco-2 ^a	Pgp inhibitor	Pgp substrate	hERG blocker ^b	Ames toxicity
10a	-5.11	0.45	0.03	0.57	0.59
10b	-5.31	0.52	0.01	0.48	0.67
10c	-4.98	0.70	0.02	0.56	0.64
10d	-4.94	0.86	0.02	0.58	0.63
10e	-4.96	0.70	0.00	0.55	0.53
10f	-4.81	0.50	0.02	0.68	0.46
10g	-4.78	0.75	0.01	0.72	0.42
10h	-5.12	0.90	0.00	0.37	0.53
10i	-4.90	0.73	0.01	0.56	0.43
10j	-4.92	0.78	0.01	0.62	0.36
10k	-5.07	0.77	0.02	0.51	0.57
10	-4.94	0.58	0.02	0.59	0.64
10m	-4.92	0.34	0.04	0.58	0.64
11a	-5.10	0.00	0.03	0.38	0.48
11b	-5.36	0.00	0.01	0.30	0.57
11c	-5.25	0.01	0.03	0.37	0.53
11d	-5.20	0.01	0.02	0.39	0.53
11e	-5.13	0.00	0.00	0.36	0.43
11f	-5.06	0.00	0.02	0.49	0.36
11g	-5.01	0.01	0.01	0.54	0.32
11h	-5.59	0.02	0.00	0.21	0.42
11i	-5.32	0.01	0.01	0.37	0.33
11j	-5.36	0.01	0.01	0.43	0.26
11k	-5.09	0.01	0.02	0.32	0.47
11	-5.11	0.00	0.03	0.40	0.53
11m	-5.14	0.00	0.04	0.39	0.54
1 2 a	-5.07	0.11	0.16	0.71	0.99
12b	-5.24	0.14	0.04	0.63	0.99
12c	-5.07	0.26	0.15	0.70	0.99
12d	-5.09	0.45	0.13	0.71	0.99
12e	-5.21	0.27	0.01	0.69	0.99
12f	-4.99	0.13	0.11	0.80	0.98
12g	-5.02	0.30	0.07	0.82	0.98
12h	-5.23	0.60	0.00	0.52	0.99
12i	-4.97	0.29	0.09	0.70	0.98
12j	-4.99	0.39	0.06	0.75	0.97
12k	-5.43	0.31	0.10	0.66	0.99
121	-5.13	0.17	0.15	0.73	0.99
12m	-5.17	0.07	0.23	0.72	0.99
19a	-4.98	0.88	0.02	0.49	0.49

19b	-5.09	0.90	0.00	0.41	0.58
19c	-4.92	0.95	0.02	0.48	0.54
19d	-4.91	0.98	0.01	0.50	0.53
19e	-4.91	0.94	0.00	0.47	0.43
19f	-4.82	0.90	0.01	0.61	0.36
19g	-4.81	0.96	0.01	0.65	0.32
19h	-5.07	0.98	0.00	0.30	0.43
19i	-4.85	0.96	0.01	0.48	0.33
19j	-4.85	0.97	0.01	0.54	0.27
19k	-4.97	0.96	0.01	0.43	0.47
191	-4.86	0.90	0.02	0.52	0.54
19m	-4.86	0.79	0.02	0.51	0.54
20a	-5.01	0.02	0.01	0.32	0.37
20b	-5.19	0.03	0.00	0.25	0.46
20c	-5.12	0.06	0.01	0.31	0.42
20d	-5.10	0.12	0.00	0.33	0.41
20e	-5.04	0.05	0.00	0.30	0.32
20f	-4.96	0.03	0.01	0.43	0.26
20g	-4.95	0.06	0.00	0.47	0.23
20h	-5.42	0.16	0.00	0.17	0.32
20i	-5.22	0.06	0.00	0.31	0.24
20j	-5.28	0.10	0.00	0.36	0.18
20k	-5.00	0.07	0.00	0.26	0.35
201	-5.08	0.03	0.01	0.34	0.42
20m	-5.10	0.01	0.01	0.33	0.43
21a	-5.09	0.76	0.03	0.53	0.98
21b	-5.19	0.80	0.01	0.44	0.99
21c	-5.11	0.90	0.03	0.51	0.99
21d	-5.11	0.95	0.02	0.54	0.99
21 e	-5.28	0.90	0.00	0.51	0.98
21f	-5.06	0.78	0.02	0.64	0.97
21g	-5.08	0.90	0.01	0.68	0.97
21h	-5.23	0.97	0.00	0.33	0.98
21 i	-5.02	0.90	0.02	0.52	0.97
2 1j	-5.05	0.93	0.01	0.58	0.96
21k	-5.35	0.91	0.01	0.46	0.98
21	-5.06	0.82	0.03	0.55	0.99
21m	-5.04	0.61	0.04	0.54	0.99
23	-5.02	0.45	0.20	0.33	0.52
24	-5.17	0.00	0.06	0.16	0.42
25	-5.12	0.11	0.66	0.39	0.98

^{*a*} Caco-2 values are log units; optimal results are >-5.15. ^{*b*} Values are probability of being hERG blockers where IC₅₀ \leq 10 μ M.

Figure S4. Comparison of binding conformations with alkyl ring modification. Left to right: compound **1c**, **20h**, **1b**. Between **20h** and the other compounds, being its corresponding morpholinyl analogue (**1c**) and most potent inhibitor **1b**, a chair flip of the alkyl ring can be seen. Between **1b** and the other two compounds, the carbonyl group has been rotated.

Figure S5. Interactions and distances between 1b and PC-PLC_{BC}. Waters omitted for clarity.

Protein Residue	Interaction Type	Distance (Å)
Leu135	π-alkyl	3.86
Asn134	π-donor H bond	3.85
Thr133	π-sigma	3.40
Phe66	π-alkyl and π- π	5.43 and 3.84
Zn247	Attractive charge	4.31
Zn246	Attractive charge	2.34
Zn248	Attractive charge	2.60
Glu146	C-H bond, π -anion bonds	2.63, 4.71, 4.97
Trp1	C-H bond	2.63
Tyr56	H bond	2.95

Table S12. Interactions and distances between 1b and PC-PLC_{BC}.

Water molecule	Interaction type	Distance (Å)
HOH258	Unfavourable x 5	1.02 - 1.47
HOH341	Unfavourable x 2	1.58 and 1.86
HOH249	Favourable x 1, unfavourable x 1	2.82, 0.54
HOH250	Favourable, unfavourable x 2	2.74, 2.02 and 1.24
HOH452	Unfavourable x 3	1.55 – 1.91
HOH251	Unfavourable x 4	1.56 - 2.04
HOH254	Favourable	1.75
HOH256	Unfavourable x 6	1.20 - 1.78
HOH318	Unfavourable x 2	0.93 and 1.75

Table S13. Interactions and distances between 1b and active waters of PC-PLC_{BC}.

Figure S6. Interactions and distances between 20h and $\mathsf{PC-PLC}_{\mathsf{BC}}.$ Waters omitted for clarity.

Table S14. Interactions and distances between 20h and $\mathsf{PC-PLC}_{\mathsf{BC}}$ as compared with 1b.

Protein Residue	Interaction Type	Distance (Å)
Leu135	Absent	-
Asn134	Absent	-
Thr133	Absent	-
Phe66	π-alkyl and π-π	5.35 and 3.96
Zn247	Attractive charge	2.30
Zn246	Attractive charge	4.23
Zn248	Attractive charge	2.56
Glu146	C-H bond, π -anion bonds	3.08 and 4.64
Trp1	Absent	-
Tyr56	H bond	2.95
Ala3*	Alkyl	5.30

* interaction not observed in 1b

Table S15. Interactions and distances between 20h and active waters of PC-PLC_{BC}.

Water molecule	Interaction type (x quantity)	Distance (Å)
HOH258	Unfavourable x 3	1.02 - 2.0
HOH341	Unfavourable x 4	0.85 - 2.18
HOH249	Unfavourable x 2	0.58 and 1.66
HOH250	Unfavourable x 3	0.55 - 1.88
HOH452	Unfavourable x 2	1.74 - 1.87
HOH251	Unfavourable x 4	1.31 - 2.02
HOH254	Favourable x 1, unfavourable x 1	1.66 and 2.06
HOH256	Unfavourable x 4	0.92 - 1.58
HOH318	Unfavourable x 2	1.16 and 1.58

References

- Hough, E.; Hansen, L. K.; Birknes, B.; Jynge, K.; Hansen, S.; Hordvik, A.; Little, C.; Dodson, E.; Derewenda, Z. High-Resolution (1.5 Å) Crystal Structure of Phospholipase C from Bacillus Cereus. *Nature* 1989, 338 (6213), 357–360. https://doi.org/10.1038/338357a0.
- (2) Yoon, S.; Eom, G. H. HDAC and HDAC Inhibitor: From Cancer to Cardiovascular Diseases. *Chonnam Med. J.* **2016**, 52 (1), 1–11. https://doi.org/10.4068/cmj.2016.52.1.1.
- (3) R Core Team. R: A Language and Environment for Statistical Computing, 2024. https://www.R-project.org/.
- (4) Guha, R. Chemical Informatics Functionality in R. J. Stat. Softw. 2007, 18, 1–16.
- https://doi.org/10.18637/jss.v018.i05.
- Fu, L.; Shi, S.; Yi, J.; Wang, N.; He, Y.; Wu, Z.; Peng, J.; Deng, Y.; Wang, W.; Wu, C.; Lyu, A.; Zeng, X.; Zhao, W.; Hou, T.; Cao, D. ADMETlab 3.0: An Updated Comprehensive Online ADMET Prediction Platform Enhanced with Broader Coverage, Improved Performance, API Functionality and Decision Support. *Nucleic Acids Res.* 2024, *52* (W1), W422–W431. https://doi.org/10.1093/nar/gkae236.
- Baell, J. B.; Holloway, G. A. New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays. J. Med. Chem. 2010, 53 (7), 2719–2740. https://doi.org/10.1021/jm901137j.
- Lipinski, C. A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1
 (4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007.
- Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings1. *Adv. Drug Deliv. Rev.* 2001, *46* (1), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0.
- (9) Veber, D. F.; Johnson, S. R.; Cheng, H.-Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45 (12), 2615–2623. https://doi.org/10.1021/jm020017n.
- (10) Jorgensen, W. L.; Duffy, E. M. Prediction of Drug Solubility from Structure. Adv. Drug Deliv. Rev. 2002, 54 (3), 355–366. https://doi.org/10.1016/S0169-409X(02)00008-X.
- (11) Comer, J. E. A. High-Throughput Measurement of Log D and pKa. In *Drug Bioavailability*; John Wiley & Sons, Ltd, 2003; pp 21–45. https://doi.org/10.1002/3527601473.ch2.