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Simulation Details

The epoxy monomers and hardeners were initially loosely placed in the simulation box. The ratio 

of epoxy monomers to hardeners was generally adjusted to maximize the degree of curing as 

possible. Subsequently, they underwent a curing process, leading to the formation of cross-links 

between components. Following the curing process, well-equilibrated cross-linked epoxy resins 

were produced, resulting appropriately sized simulation box for epoxy resins, as depicted below. 

The specific details of the MD simulation process employed for the curing process can be found 

in the previous study in Lee et al(1). Various previous studies have used the GAFF force field for 

epoxy resin and validated that GAFF has an advantage in accurately reproducing its properties 

(2-8). Therefore, we chose the GAFF force field to model the epoxy resin in our work.

Figure S1. Simulation snapshots depicting the initial and final configuration of epoxy resins. 

Following the generation of cross-linked polymers, various properties were computed. The glass 

transition temperature (Tg) and volumetric coefficient of thermal expansion (CTE) were 

determined from the Temperature-Density plot. Tg was estimated using the piecewise regression 
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on the Temperature-Density plot. To enhance the accuracy of Tg calculations, the entire 

temperature range was divided into glassy, glass transition, and rubbery regions as visualized in 

Figure S2. Regression analysis was performed on each data point within the glassy and rubbery 

states to derive the coefficients of a first-order polynomial. The intersection of the regression 

lines from the glassy and rubbery regions was then calculated to determine the potential Tg value. 

The transition regions encompassed all possible temperature intervals within the calculated range. 

The potential Tg values were calculated for each transition region, and the final value was 

determined by averaging all these potential points.

Figure S2. Temperature-density plot illustrating the estimation of Tg with the depiction of three 
divided regions: glassy, glassy transition, and rubbery region.

We conducted validation of our glass transition temperature (Tg) estimation method using 

varying temperature intervals (2K, 5K, and 10K). This validation aimed to assess how the Tg 

values fluctuated with changes in the interval size. The results, illustrated in Figure S3, 

demonstrate that Tg values calculated with a 10K interval are consistent with those obtained 

using smaller intervals of 2K and 5K. Such consistency across these intervals ensures the 

accuracy of our Tg estimations.

Considering the computational costs, which are a crucial factor in efficiently collecting data for 

machine learning models, we opted for the 10K interval. This approach allows us to effectively 

3



gather a diverse data on epoxy resins, thereby facilitating the development of robust machine 

learning models.

Figure S3. Estimation of Tg at various temperature intervals

Table S1. Details of the chemical space of epoxy resins collected via MD simulation, including 
the number, range, and average values of the data.

Number of Data Range Average

Density [g/cm3] 789 1.00 - 1.32 1.12

CTE [ppm/K] 789 18.23 - 212.24 66.16

Tg [K] 789 265.8 - 510.6 391.8

Young's modulus [GPa] 789 0.50 -15.85 5.56
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Machine Learning Models

Various ML models were tested to determine the most suitable model for predicting epoxy resin 

properties. The five models included XGBoost, Gradient Boosting Machine (GBM), Random 

Forest, Support Vector Machine (SVM), and Single-layer Neural Network. The Single-layer 

Neural Network exhibited a negative R2 score, indicating insufficient training, likely due to the 

relatively small dataset of polymers. While, regression models demonstrated superior 

performance compared to the deep learning model. The performance of regression models is 

described below. Among the tested models, XGBoost exhibited the best performance across all 

four properties. Consequently, it is concluded that the XGBoost model is the most appropriate 

ML model for predicting epoxy resin properties. The SVM (svm), Random Forest 

(RandomForestRegressor), and GBM (GradientBoostingRegressor) machine learning models 

were conducted using scikit-learn (sklearn) package, version 0.23.1 and XGBoost model was 

conducted using the xgboost package, version 1.5.0. The Single-layer Neural Network was 

implemented using Tensorflow, version 2.4.1, and featured a single dense layer with 'ReLU’ 

activation and 'RMSprop’ as the optimizer. 
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Figure S4. Performance of ML Models Evaluated with (a) R2 Score and (b) Mean Absolute 
Error (MAE).

A total of 1463 descriptors from epoxy monomer and 1345 descriptors from the hardener were 

extracted. Subsequently, an automatic feature selection algorithm, Recursive Feature Elimination 

(RFE), was implemented to select the optimal subset of descriptors for each property. The 

number of optimized descriptors varies for each property and listed below. Hyperparameter 

optimization was conducted using 'GridSearchCV', which evaluates every possible parameter 

combination to determine the one that yields the highest cross-validation score. We concentrated 

on the 'n_estimators', 'learning_rate', and 'max_depth' hyperparameters, optimizing each for the 

respective properties. The optimized hyperparameters are detailed in Table S3.
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Table S2. The number of selected descriptors for each property.

Density CTE Tg Young's modulus

129 79 99 79

Table S3. Results of hyperparameter tuning.

Density CTE Tg Young's 
modulus

n_estimator 200 100 600 600

Learning_rate 0.1 0.1 0.01 0.01

Max_depth 4 4 4 4
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Figure S5.  Learning curves of the machine learning model for (a) density, (b) CTE, (c) Tg, and (d) 
Young's modulus.
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New Epoxy Design

Leveraging the structure-property relationship extracted from our ML model, we designed a new 

epoxy resin to achieve desired properties. The relationships indicate that 'System_mass' and 

epoxide number significantly impact these key properties. Therefore, we designed the epoxy 

resin to have high 'System_mass' and epoxide number, anticipating high density, Tg, Young's 

modulus, and low CTE. To achieve this, we selected (a) epoxy phenol novolac and (b) 

dicyandiamide. Epoxy phenol novolac has a relatively high epoxide number (8), and the 

combination of epoxy phenol novolac and dicyandiamide results in a high system mass (6.9g), 

which fits our design algorithm.

Figure S6. Chemical structures of (a) epoxy phenol novolac, (b) dicyandiamide.

This epoxy resin was synthesized, and its properties were calculated virtually via MD simulation. 

The properties predicted by our ML model and the actual values calculated from MD simulation 

were compared in Figure S6. Each property is plotted within the existing property range to 

visualize the extent to which the epoxy resin's properties fit within our existing dataset. The 

results show that the error in the properties is relatively low, indicating that our ML model 

provides accurate predictions. Additionally, the designed epoxy resin achieves the expected 

properties with relatively high density, Tg, Young's modulus, and low CTE. This strongly 
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suggests that our predictive model offers accurate predictions and that the structure-property 

relationship we proposed can assist researchers in designing new epoxy resins with desired 

properties.

Figure S6. Comparison between ML prediction and MD simulation values of epoxy resin 
synthesized from epoxy phenol novolac and dicyandiamide for (a) density, (b) CTE, (c) Tg, and 
(d) Young's modulus. The red line denotes the average value of the existing dataset.

10



REFERENCES

1. Lee W, Chong S, Kim J. Graph-Network-Based Predictive Modeling for Highly Cross-
Linked Polymer Systems. arXiv preprint arXiv:240106152. 2023.
2. Fan J, Anastassiou A, Macosko CW, Tadmor EB. Molecular dynamics predictions of 
thermomechanical properties of an epoxy thermosetting polymer. Polymer. 2020;196:122477.
3. Makarov G, Borodina O, Makarova T, Ignatova A, Olivenko N, Bartashevich E, et al. 
Molecular Dynamics Study of Cured ED-20 Epoxy Resin for Predicting the Glass Transition 
Temperature and Relationship with Structure Features. The Journal of Physical Chemistry A. 
2023;127(17):3894-905.
4. Gavrielides A, Duguet T, Aufray M, Lacaze-Dufaure C. Model of the DGEBA-EDA 
Epoxy Polymer: Experiments and Simulation Using Classical Molecular Dynamics. International 
Journal of Polymer Science. 2019;2019:9604714.
5. Sridhar AS. Effect of stoichiometry on crosslinked epoxy resin characteristics: structural 
heterogeneities, topological defects, properties, free volume and segmental mobility. Soft Matter. 
2022;18(12):2354-72.
6. Lin P-H, Khare R. Molecular Simulation of Cross-Linked Epoxy and Epoxy−POSS 
Nanocomposite. Macromolecules. 2009;42(12):4319-27.
7. Miura T, Shimoi Y, Hasegawa K, Takagi K, Yamazaki N, Matsuki T, et al. Simulation 
Study of the Effects of Interfacial Bonds on Adhesion and Fracture Behavior of Epoxy Resin 
Layers. The Journal of Physical Chemistry B. 2021;125(39):11044-57.
8. Khare KS, Phelan FR, Jr. Quantitative Comparison of Atomistic Simulations with 
Experiment for a Cross-Linked Epoxy: A Specific Volume–Cooling Rate Analysis. 
Macromolecules. 2018;51(2):564-75.

11


