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S1. LINEAR FREE ENERGY RELATIONSHIP (LFER) 

The LFER, trained using a 9-solvent set selected based on the D-optimality criterion 

for each selection space, is shown below:  

Selection space 1: 

ln 𝑘୐,୐୊୉ୖ = −16.82 + 6.75𝐴 + 4.68𝐵 + 0.18𝑛ଶ + 6.34𝛾 + 0.95𝜖 − 0.19𝜙

+ 0.29𝜓 

Selection space 2: 

ln 𝑘୐,୐୊୉ୖ = 0.27 + 10.42𝐴 + 5.32𝐵 − 7.17𝑛ଶ + 7.68𝛾 − 1.55𝜖 − 1.50𝜙 + 1.60𝜓 

Selection space 3: 

ln 𝑘୐,୐୊୉ୖ = −20.04 + 0.29𝐴 + 1.59𝐵 + 2.77𝑛ଶ + 2.95𝛾 + 14.68𝜖 − 1.52𝜙

+ 1.13𝜓 

Selection space 4: 

ln 𝑘୐,୐୊୉ୖ = −20.11 + 1.29𝐴 + 0.45𝐵 − 0.16𝑛ଶ + 2.55𝛾 + 6.03𝜖 − 0.30𝜙

− 0.50𝜓 

The impact of specific solvent descriptors/properties on reaction kinetics can be 

inferred from the coefficients associated with these LFERs, although, as in most data-

driven models, it can be difficult to assign physical meaning to the coefficients. The 

regression coefficients in these LFER models indicated that solvents with high 

hydrogen bond acidity, hydrogen bond basicity, and surface tension consistently lead to 

increased rate constants, and thus, higher solvent rankings. Such a favourable effect is 

to be expected for solvents that can form hydrogen bonds (as donor or acceptor), as 

such solvents can significantly stabilise the transition state of the Menschutkin reaction, 

where charge separation occurs, relative to the neutral reactants.  
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S2. LOCATIONS OF SUPPLEMENTARY MATERIALS IN THE ZENODO 

REPOSITORY AND THE INFORMATION CONTAINED 

Address of the Zenodo online repository: 10.5281/zenodo.8396100 

 supplementary_material_v3  chapter6  Fedorov  Fedorov_SS1.ipynb: 

This Jupyter notebook implements Fedorov’s algorithm for selection space 1.  

 supplementary_material_v3  chapter6  Fedorov  Fedorov_SS2.ipynb: 

This Jupyter notebook implements Fedorov’s algorithm for selection space 2. 

 supplementary_material_v3  chapter6  Fedorov  Fedorov_SS3.ipynb: 

This Jupyter notebook implements Fedorov’s algorithm for selection space 3. 

 supplementary_material_v3  chapter6  Fedorov  SS1: This text file lists 

the names of the solvents in selection space 1 along with their solvent descriptor 

values.  

 supplementary_material_v3  chapter6  Fedorov  SS2: This text file lists 

the names of the solvents in selection space 2 along with their solvent descriptor 

values.  

 supplementary_material_v3  chapter6  Fedorov  SS3: This text file lists 

the names of the solvents in selection space 3 along with their solvent descriptor 

values.  

 supplementary_material_v3  chapter6  MBDoE_GAMS  

GAMS_SS1.gms: This GAMS code contains the mixed-integer non-linear 

programming formulation of the MBDoE problem for solvent selection from 

selection space 1, based on the D-optimality criterion. 

 supplementary_material_v3  chapter6  MBDoE_GAMS  

GAMS_SS1.lst: This is the output file generated by running GAMS_SS1.gms. 

The optimal solvent set is located starting from line 571506. 

 supplementary_material_v3  chapter6  MBDoE_GAMS  

GAMS_SS4.gms: This GAMS code contains the non-linear programming 

formulation of the MBDoE problem for solvent selection from selection space 

4, based on the D-optimality criterion. Lines 72 – 85 detail the bounds on 

solvent descriptors, same as those used for generating selection space 3.  
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 supplementary_material_v3  chapter6  MBDoE_GAMS  

GAMS_SS4.lst: This is the output file generated by running GAMS_SS4.gms, 

the optimal solvent set is located starting from line 915. 

 supplementary_material_v3  chapter6  MBDoE_GAMS  initial.inc: This 

text file lists the initial guess of the optimal solvent set for the MBDoE problem 

of selection space 1. The file is read by GAMS_SS1.gms. 

 supplementary_material_v3  chapter6  regression.xlsx: This Excel file 

provides the data for Figure 9 in the manuscript. The file is organised as follows: 

o  Sheet 1: Contains linear regression results from the optimal solvent set 

of various sizes using the Minnesota solvent descriptor database for 

training and the CAMD design space for validation.  

o Sheet 2: Contains quadratic regression results from the optimal solvent 

set of various sizes using the Minnesota solvent descriptor database for 

training and the CAMD design space for validation.  

o Sheet 3: Contains linear regression results from the optimal solvent set 

of various sizes using the CAMD design space for both training and 

validation.  

o Sheet 4: Contains quadratic regression results from the optimal solvent 

set of various sizes using the CAMD design space for both training and 

validation.  

o Sheet 5: Contains the linear regression results corresponding to the 

parity plots in Figure 7 of the manuscript, including the intercept and 

coefficients of each LFER in section 3.4.  

 supplementary_material_v3  chapter6  solvents.xlsx: This Excel file lists 

the solvents within each selection space. The sheet named as “MBDoE solvents” 

contains the optimal 9-solvent sets for all selection spaces, the optimal 13-

solvent sets for SS1 and SS2, and the optimal 49 solvent sets for SS1 and SS2, 

corresponding to the data presented in Figure 8 of the manuscript.  

 supplementary_material_v3  chapter6  SS2_generator.gms: This GAMS 

code contains the mixed-integer linear programming (MILP) formulation used 
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to generate selection space 2. Atom groups used for generating SS2 are defined 

between line 11 and 20. Lines 360 to 404 detail the constraints on the maximum 

number of each atom group allowed in the designed molecule, with some atom 

groups deactivated (i.e., the maximum number set to 0). The “equations” section 

of the GAMS code outlines all constraints used in generating of SS2. For an 

explanation of each constraint, please refer to the paper at: 

https://doi.org/10.1016/j.compchemeng.2023.108345.  
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S3. RELATIONSHIP BETWEEN MODEL PERFORMANCE AND D-
OPTIMALITY CRITERION VALUES FOR THE CYCLISATION OF 
OXYMA/DIC ADDUCT 

We have also applied the MBDoE approach to the cyclisation of the adduct of ethyl 
(hydroxyimino)cyanoacetate (Oxyma) and diisopropylcarbodiimide (DIC), which 
produces hydrogen cyanide (HCN) in peptide synthesis (referred to as “the HCN 
reaction”, the reaction is described in the papers https://doi.org/10.1016/B978-0-323-
95879-0.50102-8 and https://doi.org/10.1016/j.compchemeng.2023.108345). The test 
set for the HCN reaction is eight solvents commonly found in a chemical lab, i.e., 
toluene, chlorobenzene, ethyl acetate, tetrahydrofuran, acetone, acetonitrile and 
nitromethane. The resulting probability distributions of mean absolute deviations 
(MADs) and rank correlations (RCs) over the D-optimality criterion values for the HCN 
reaction are shown in Figure S1 and S2, respectively. It shows that for the HCN reaction, 
greater D-optimality criterion values generally lead to larger probability of obtaining 
linear free energy relationships with MADs smaller than 3 log units. When the natural 
logarithm of the D-optimality criterion value is greater than -2, the probability of 
achieving a MAD smaller than 3 log units is above 80%. As for RC, a trend can also be 
observed that greater D-optimality criterion values result in larger probability of 
obtaining a model with RC greater than 0.7. However, the maximum probability that 
can be achieved is only between 60% and 70%. These results are, in general, consistent 
with those obtained for the Menschutkin reaction in the manuscript. 

 

Fig. S1 Probability distribution of obtaining linear free energy relationships with a 

MAD < 3 log units for the HCN reaction.  
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Fig. S2 Probability distribution of obtaining linear free energy relationships with a RC > 

0.7 for the HCN reaction.  

 


