Supplementary Information (SI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

for

Phenyl- versus cyclohexyl-terminated substituents: Comparative study on aggregated structures and electrontransport properties in n-type organic semiconductors

Shohei Kumagai, ^{a,b*} Takeru Koguma, ^b Yutaro Arai, ^c Go Watanabe, ^{d,e} Hiroyuki Ishii, ^f Jun Takeya,^{b,c} Toshihiro Okamoto ^{a,b,c*}

^a Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8502, Japan. E-mail: kumagai.s.am@m.titech.ac.jp; tokamoto@cap.mac.titech.ac.jp

^b Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan

^c Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

^d Department of Data Science, School of Frontier Engineering, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan

^e Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan

^f Department of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

Scheme S1. Synthetic scheme for ChxC₂–BQQDI.

Figure S1. ¹H NMR spectrum of ChxC₂-BQQDI (400 MHz, D₂SO₄, 25 °C)

Figure S2. ¹H NMR spectrum of D₂SO₄ (400 MHz, 25 °C)

Table S1.	X-rav crystal	lographic data.

ChxC ₂ -BQQDI ^{a)}	PhC ₂ -BQQDI [S1]
CuKα	CuKα
1.54187	1.54187
$C_{38}H_{36}N_4O_4$	$C_{38}H_{24}N_4O_4$
612.71	600.61
Monoclinic	Monoclinic
$P2_{1}/n$	$P2_{1}/n$
2232687	1938483
0.460×0.054×0.005	0.700×0.047×0.005
4.9724(2)	7.7048(2)
7.7301(3)	5.02249(15)
38.8902(15)	35.8104(11)
90.514(6)	92.467(7)
1494.77(10)	1384.48(7)
2	2
295	296
0.716	0.771
1.361	1.441
648	624
1.044	1.105
0.0847, 0.1123	0.443, 0.549
0.2171, 0.2428	0.1229,0.1297
2718	2522
4.548-67.687	4.945-67.687
0.1016	0.0289
	$\begin{array}{c} {\rm ChxC_2-BQQDI}^{a)} \\ {\rm Cu}K\alpha \\ 1.54187 \\ {\rm C}_{38}{\rm H}_{36}{\rm N}_{4}{\rm O}_{4} \\ 612.71 \\ {\rm Monoclinic} \\ P2_1/n \\ 2232687 \\ 0.460 \times 0.054 \times 0.005 \\ 4.9724(2) \\ 7.7301(3) \\ 38.8902(15) \\ 90.514(6) \\ 1494.77(10) \\ 2 \\ 295 \\ 0.716 \\ 1.361 \\ 648 \\ 1.044 \\ 0.0847, 0.1123 \\ 0.2171, 0.2428 \\ 2718 \\ 4.548 - 67.687 \\ 0.1016 \\ \end{array}$

 $R = \Sigma(|F_{\rm o}| - |F_{\rm c}|) / \Sigma|F_{\rm o}|$

 $R_{w} = [\Sigma w(|F_{o}| - |F_{c}|)^{2} / \Sigma w|F_{o}|^{2}]^{1/2}$

^{a)} $w = 1 / [s^2(F_o^2) + (0.1530P)^2 + 0.2104P]$, where $P = (F_o^2 + 2F_c^2) / 3$

Figure S3 (a, b) Definition of d_x , d_y and d_π . C atoms in the BQQ moiety are colored by pink. (c) LUMO of methyl-substituted BQQDI calculated at the B3LYP/6-31+G(d) level of DFT.

Figure S4 Single molecular geometries of N,N'-bis(2-cyclohexylethyl)naphtho[2,3-*b*:6,7-*b'*]dithiophene-4,5,9,10-tetracarboxylic acid diimide.^{S2}

	XRD	DFT	
Bond angle	111.1	112.1	
∠(N1-C1-C2) (°)	111.1		
Bond angle	116.1	113.7	
∠(C1-C2-C3) (°)	110.1		
Torsion angle	11 4	4.7	
∠(N1-C1-C2-C3) (°)	11.4		
Torsion angle	1.6	10.0	
∠(C1-C2-C3-C4) (°)	1.0	10.0	
Torsion angle	44.1	66.1	
∠(C1-C2-C3-C5) (°)	44.1	00.1	

Table S2. Summary of bond and torsion angles of N,N'-bis(2-cyclohexylethyl)naphtho[2,3-*b*:6,7-*b'*]dithiophene-4,5,9,10-tetracarboxylic acid diimide.

Figure S5 X-ray diffraction images of the single-crystal ChxC₂–BQQDI OTFT. X-ray was irradiated nearly parallel to the substrate. Two images are the same data shown by different contrasts.

Figure S6 Azimuthal plot of the inverse of effective mass of electrons $(m^*)^{-1}$ in the *ab* plane. Image behind the plot shows the corresponding packing structure of ChxC₂–BQQDI (2-cyclohexylethyl substituents are omitted for clarity).

Compound	ChxC ₂ –BQQDI PhC ₂ –BQQDI		
Num. of molecules	600	600	
Temperature (K)	295	296	
Crystal system	Monoclinic	Monoclinic	
Space group	$P2_1/n$	$P2_1/n$	
<i>a</i> (nm)	4.9724	7.7048	
<i>b</i> (nm)	7.7301	5.0225	
<i>c</i> (nm)	11.6671	10.7431	
α (°)	90	90	
β (°)	90.51	92.47	
γ (°)	90	90	

Table S3. Initial parameters for MD simulations.

Figure S7 Time trace of the unit cell volume during the NTP run. The volume is corrected from the $10 \times 10 \times 3$ supercell volume for MD simulations to a reduced cell volume corresponding to the dimensions of single crystal data. The average volume for the last 20 ns of 50 ns MD runs is 1393.0 ± 2.0 and 1516.1 ± 1.6 Å³ for PhC₂–BQQDI and ChxC₂–BQQDI, respectively.

Figure S8 Additional results of MD simulation. (a, b) Color-coded *B*-factor distribution (unit: $Å^2$) obtained from the trajectory of the crystal structure of PhC₂–BQQDI during the last 10 ns of 100 ns MD runs at 296 K. (c, d) Histogram of t_3 for (c) ChxC₂–BQQDI and (d) PhC₂–BQQDI.

	<i>t</i> (meV) <i>a</i>)	$t_{\rm avg} ({\rm meV})^{b)}$	σ (meV) $^{b)}$	$\sigma/t_{ m avg}$
ChxC ₂ –BQQDI				
t_1	+82.1	+71.6	27.2	0.38
t_2	+53.8	+37.8	15.3	0.41
t ₃	+18.2	+11.6	2.6	0.22
PhC ₂ -BQQDI				
t_1	+90.7	+82.7	26.4	0.32
t_2	+58.5	+40.8	14.7	0.36
t_3	+18.9	+11.8	2.7	0.23

Table S4. Summary of transfer integrals based on crystal structure and MD simulation.

a) Calculated based on the crystallographic data. *b*) Calculated based on MD simulations.

References in the Supplementary Information

S1 T. Okamoto, S. Kumagai, E. Fukuzaki, H. Ishii, G. Watanabe, N. Niitsu, T. Annaka, M. Yamagishi, Y. Tani, H. Sugiura, T. Watanabe, S. Watanabe and J. Takeya, *Sci. Adv.*, 2020, **6**, eaaz0632.

S2 M. Nakano, D. Hashizume and K. Takimiya, *Molecules*, 2016, 21, 981.