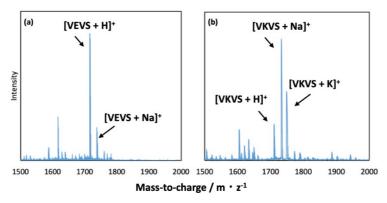
Support information for:

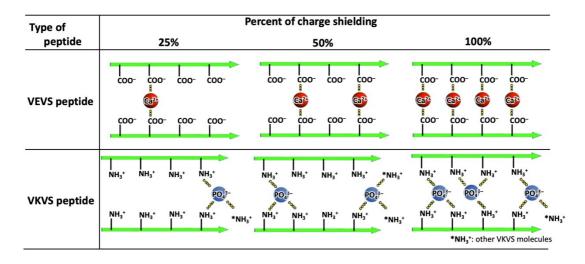
Selective mineralization at hydrogel interface induced by fusion between peptide hydrogels

Yongbaek Kim^a, Hiroto Isobe^b, Keishi Nishio^b, and Kazuki Murai^{a*}

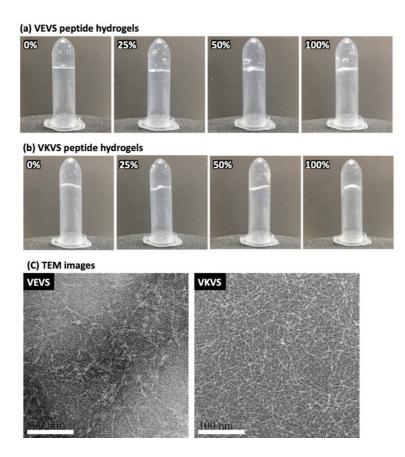
^a Department of Chemistry and Materials, Faculty of Textile Science and Technology,

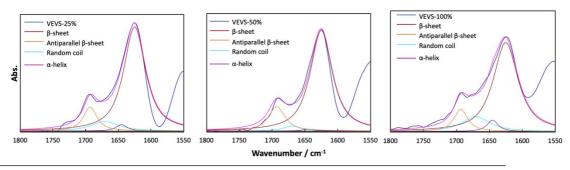

Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan.

^b Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.


* Corresponding author: murai_kazuki@shinshu-u.ac.jp (Dr. K. Murai)

Contents


- 1. S1. MALDI-TOF-MS spectra of (a) the VEVS and (b) VKVS peptides.
- S2. Schematic of the concentration of the added mineral source ions for each peptide hydrogel.
- 3. S3. Appearance of (a) VEVS and (b) VKVS peptide hydrogels, including (c)TEM images of the VEVS and VKVS peptide networks in hydrogels containing 100% mineral source concentration.
- S4. FT-IR spectra of VEVS peptide systems (upper part) and the VKVS (lower part) peptide systems.
- **5. S5.** Changes in the storage elastic modulus (G') and loss elastic modulus (G") with an angular frequency for VEVS (left) and VKVS (right) peptide hydrogel systems containing each mineral source concentration.
- 6. S6. FT-IR spectra of the mineralized CaP at the fusion interface in VKVS/VEVS, Water/VEVS, VKVS/Water, and Water/Water systems containing 100% mineral source concentration at several mineralization times.


Fig. S1. MALDI-TOF-MS spectra of (a) the VEVS and (b) VKVS peptides. Reprinted with permission from Ref. [15]. Copyright 2024, American Chemical Society.

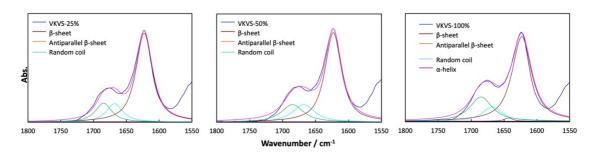
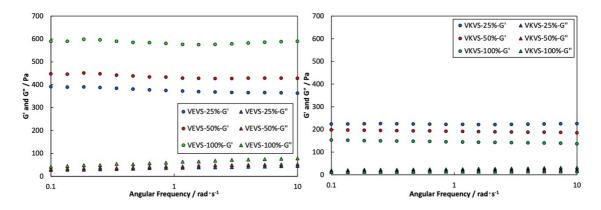
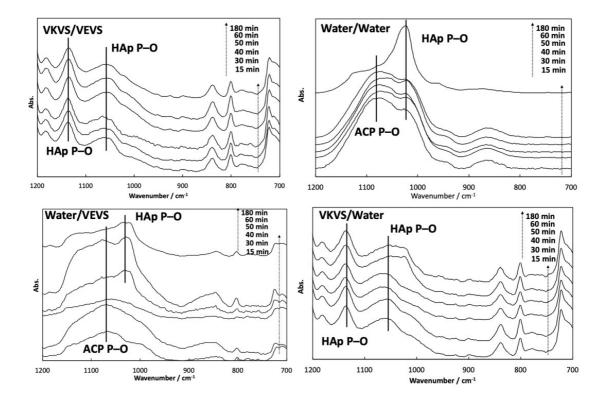

Fig. S2. Schematic of the concentration of the added mineral source ions for each peptide hydrogel.

Fig. S3. Appearance of (a) VEVS and (b) VKVS peptide hydrogels, including (c)TEM images of the VEVS and VKVS peptide networks in hydrogels containing 100% mineral source concentration. Scale bars = 100 nm.



Concentration of	Content/ %		
the mineral source	α-helix	β-sheet	Random coil
25%	3	87	10
50%	1	95	4
100%	5	80	15



Content/ %			
α-helix	β-sheet	Random coil	
0	83	17	
0	79	21	
2	84	14	
	α-helix 0 0 2	α-helix β-sheet 0 83 0 79	

Fig. S4. FT-IR spectra of VEVS peptide systems (upper part) and the VKVS (lower part) peptide systems.

Fig. S5. Changes in the storage elastic modulus (G') and loss elastic modulus (G") with an angular frequency for VEVS (left) and VKVS (right) peptide hydrogel systems containing each mineral source concentration.

Fig. S6. FT-IR spectra of the mineralized CaP at the fusion interface in VKVS/VEVS, Water/VEVS, VKVS/Water, and Water/Water systems containing 100% mineral source concentration at several mineralization times.