
  

SI Fig. 1 Overall workflow for developing DORA-XGB
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SI Fig. 2 Distribution of  values in both directions for monooxygenases (EC 1.14.13.x). The dashed line ∆𝑟𝐺
'

𝑚𝑖𝑛

represents our thermodynamic feasibility threshold of -10 kJ/mol.



SI Fig. 3 Distribution of  values in both directions for alcohol dehydrogenases (EC 1.1.1.x). The dashed line ∆𝑟𝐺
'

𝑚𝑖𝑛

represents our thermodynamic feasibility threshold of -10 kJ/mol.



SI Fig. 4. Distribution of  values in both directions for decarboxylases (EC 4.1.1.x). The dashed line represents ∆𝑟𝐺
'

𝑚𝑖𝑛

our thermodynamic feasibility threshold of -10 kJ/mol.



SI Fig. 5 Distribution of  values in both directions for aldehyde dehydrogenases (EC 1.2.1.x). The dashed line ∆𝑟𝐺
'

𝑚𝑖𝑛

represents our thermodynamic feasibility threshold of -10 kJ/mol.



SI Fig. 6 Distribution of  values in both directions for phosphoryltransferases (EC 2.7.1.x). The dashed line ∆𝑟𝐺
'

𝑚𝑖𝑛

represents our thermodynamic feasibility threshold of -10 kJ/mol.



SI Fig. 7 Distribution of  values in both directions for glucosyltransferases (EC 2.4.1.x)∆𝑟𝐺
'

𝑚𝑖𝑛



 

SI Fig. 8 (a) t-stochastic neighbors’ estimation (t-SNE) of thermodynamically feasible, thermodynamically infeasible, 
and synthetically generated negative products that fall under the alcohol dehydrogenase transformation; (b) number of 
all thermodynamically infeasible reactions versus thermodynamically feasible reactions; (c) number of all synthetically 
generated negative reactions versus thermodynamically feasible reactions.



   

SI Fig. 9 (a) The average area under the precision-recall curve (AUPRC) of alcohol dehydrogenase classifiers deployed 
on a validation set and (b) test set of alcohol dehydrogenase reactions. With 1254 feasible and 1759 infeasible alcohol 
dehydrogenase reactions in total, a stratified train/validation/test split in an 80/10/10 ratio was performed to extract 
training, validation and test sets. All model hyperparameters were optimized on the validation set using a Bayesian 
hyperparameter approach. Reaction fingerprints are created by arranging molecular fingerprints in the order [substrate, 
NAD, product, NADH] for alcohol dehydrogenase reactions in the oxidation direction and [substrate, NADH, product, 
NAD] for alcohol dehydrogenase reactions in the reduction direction.



   

SI Fig. 10 Six different configurations for arranging molecular fingerprints along a reaction feature vector are explored 
in this study and depicted here through the example of the monooxygenation of toluene catalyzed by the enzyme 
toluene-4-monooxygenase (EC 1.14.13.236). In configurations (a) and (b), primary reactant, primary product, and 
cofactor fingerprints are arranged in terms of ascending and descending molecular weights within categories. In 
configuration (c), the fingerprints of all reactant structures are added in an element-wise fashion and concatenated with 
the element-wise sum of product fingerprints. In configuration (d), the element-wise sum of product fingerprints is 
subtracted from that of reaction fingerprints. Configurations (e) and (f) serve as negative controls to confirm that there 
in indeed value to the order in which molecular fingerprints are arranged along a feature vector and that models are not 
just performing well by random chance. 



  

SI Fig. 11 In order to confirm that the performance of trained feasibility classification models is not merely by chance, 
we performed two types of negative control experiments where we expected model performance to decline: (a) in the 
first type of negative control, molecular fingerprints arranged along a reaction’s feature vector are randomly scrambled 
within only the ‘slots’ allocated to reactants and products (partially randomized) as well as throughout the entire feature 
vector (fully randomized); (b) in the second type of control experiment, the configuration in which reaction feature 
vectors are constructed is held constant while the target feasibility labels within the training set are mutated. Feasibility 
models are then trained on these augmented labels to confirm that they will perform poorly on a test dataset in which 
assigned labels have not been mutated.



  

         

SI Fig. 12 In order to determine if it would be more effective to train multiple individual feasibility classifiers specific 
to each class or to train a single, consolidated feasibility classifier for all enzymatic reaction classes, we computed the 
average area under the precision-recall curve (AUPRC) between individual classifiers trained on 33 classes of 
enzymatic reactions and our consolidated classifier. The average AUPRC from individual classifiers was found to be 
lower than that of the consolidated classifier. The top 33 classes of generalized transformations make up for 64.3% of 
the reactions in our dataset.



 

SI Fig. 13 The average area under the precision-recall curve (AUPRC), precision, recall, and F1 scores of six 
consolidated feasibility classifiers trained on all enzymatic reactions with various feature vector configurations.



SI Fig. 14 Our reaction feasibility classifier trained on the “alternate reaction center” assumption receives a higher AUPRC score 
than DeepRFC, another deep-learning based classifier trained with negative data generated under the “unreported is negative” 
assumption. Our in-house “unreported is negative” assumption dataset led to a sharp decline in model performance in contrast to 
our model trained under the “alternate reaction center” assumption.



SI Table 1. (a) Recovery of novel, experimentally validated reactions obtained from an E. coli nontargeted metabolomics dataset; 
(b) recovery of predicted, novel e. coli reactions obtained from the same dataset; (c) prediction of 4536 total plausibly negative 
reactions that were synthetically generated from the 40 plausibly positive e. coli reactions; (d) prediction of 17353 plausibly 
negative reactions that were synthetically generated from the 30 novel experimentally validated e. coli reactions.
  



  

SI Fig. 15 (a) Number of new reactions and (b) compounds remaining after each generation of a three-step network 
expansion performed by DORA-XGB starting from pyruvic acid. With DORA-XGB, users can either set custom 
thresholds or use the ones reported in this work. A higher threshold would lead to the prediction of few higher 
confidence pathways within short computational runtimes, but this efficiency comes at the cost of filtering out several 
other potential candidate pathways. Meanwhile, a lower threshold would return a larger space of candidate pathways 
but with longer runtimes and greater computational expense.



SI Fig. 16 Cumulative distribution of reactions mapped to each rule within the training (dashed orange line), validation (dashed 
maroon line), testing (dashed blue line), and benchmarking (solid red line) sets.
 



SI Fig. 17 Normalized frequency of reactions mapped to each reaction rule in the (a) training, (b) testing, (c) validation, and (d) 
benchmarking sets.


