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41 1. GENERAL PIPELINE

42 1.1 Overall workflow for building DORA-XGB.

43 In order to develop our DORA-XGB models, reported reactions from BRENDA, KEGG, and 

44 MetaCyc were curated in both directions. A thermodynamic screen was then performed to divide 

45 curated reactions into a thermodynamically feasible and infeasible set. From the 

46 thermodynamically feasible set of reactions, all products one step away that could hypothetically 

47 have been observed under the same biochemical transformation but were never actually observed 

48 are generated (our “alternate reaction center” assumption). These synthetically generated infeasible 

49 reactions are then combined with the thermodynamically infeasible known reactions found earlier 

50 to create a training dataset with both positive and negative reaction data. Stratified 

51 train/validation/test splits in an 80/10/10 ratio were then performed to divide positive and negative 

52 reaction data into sets for model training, validation, and testing respectively. All model 

53 hyperparameters were tuned with a Bayesian hyperparameter optimization procedure as opposed 

54 to an exhaustive grid-search or a random-search. 

55
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SI Fig. 1 Overall workflow for developing DORA-XGB



56 2. DEPLOYMENT AND USAGE

57 2.1 Using DORA-XGB for the prediction of enzymatic reaction feasibility.

58 Users can try our consolidated DORA-XGB classifier by providing an enzymatic reaction 

59 string as an input to the classifier. The input reaction should be balanced. For a reaction of the form 

60 “A + cofactor  B + cofactor”, the input string can written as: “A SMILES + cofactor SMILES = 

61 B SMILES + cofactor SMILES” or as “A.cofactor>>B.cofactor”. The output from DORA-XGB is 

62 a feasibility score. The optimum threshold at which an input reaction can be labelled as feasible on 

63 the basis of its predicted score has been provided and was determined through analysis of precision, 

64 recall, and F1 scores of all models against the test set at 100 linearly spaced thresholds between 0 

65 and 1. The threshold at which a model’s F1 score on its corresponding test set is maximized is then 

66 reported as its optimum threshold. Users may also choose their own threshold, allowing them to 

67 filter fewer or more compounds and reactions in a network expansion based on the threshold used. 

68

69 3. PREPROCESSING OF DATA

70 3.1 Complete list of cofactor concentration ratios used in this study.

71 The following ratios of cofactor concentrations are used in this study when using eQuilibrator 

72 to determine the minimum  value,  that can be released from a given reaction wherein ∆𝑟𝐺
' ∆𝑟𝐺

'
𝑚𝑖𝑛

73 metabolite concentration is allowed to vary from 0.1 mM to 100 mM. In this work, we considered 

74 NADH/NAD and NADPH/NADP as distinct cofactor pairs since they are bound by different 

75 concentration ratios.

76 [ATP]/ [ADP] = 10

77 [ADP]/ [AMP] = 1

78 [NADH]/ [NAD+] = 0.1

79 [NADPH]/ [NADP+] = 10

80

81
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82

83 3.2 Distribution of  values for six select classes of enzymatic reactions.∆𝑟𝐺
'

𝑚𝑖𝑛

84 Here, we present the distribution of  values for six select classes of enzymatic ∆𝑟𝐺
'

𝑚𝑖𝑛

85 reactions. These six classes are: (1) monooxygenases (EC 1.14.13.x) (SI Fig. 2), (2) alcohol 
86 dehydrogenases (EC 1.1.1.x) (SI Fig. 3), (3) decarboxylases (EC 4.1.1.x) (SI Fig. 4), (4) aldehyde 
87 dehydrogenases (EC 1.2.1.x) (SI Fig. 5), (5) phosphoryltransferases (EC 2.7.1.x) (SI Fig. 6), and 
88 (6) glucosyltransferases (EC 2.4.1.x) (SI Fig. 7). In each plot,  values are shown for both ∆𝑟𝐺

'
𝑚𝑖𝑛

89 directions of the generalized transformation. For example, within the monooxygenase class of 
90 enzymes (EC 1.14.13.x),  values are far more downhill (i.e., more negative) in the ∆𝑟𝐺

'
𝑚𝑖𝑛

91 monooxygenation direction wherein an oxygen is added to the substrate than in the reduction 
92 direction wherein an oxygen is removed from the substrate (SI Fig. 2).

93

SI Fig. 2 Distribution of  values in both directions for monooxygenases (EC 1.14.13.x). The dashed line ∆𝑟𝐺
'

𝑚𝑖𝑛

represents our thermodynamic feasibility threshold of -10 kJ/mol.

94
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SI Fig. 3 Distribution of  values in both directions for alcohol dehydrogenases (EC 1.1.1.x). The dashed line ∆𝑟𝐺
'

𝑚𝑖𝑛

represents our thermodynamic feasibility threshold of -10 kJ/mol.
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SI Fig. 4. Distribution of  values in both directions for decarboxylases (EC 4.1.1.x). The dashed line represents ∆𝑟𝐺
'

𝑚𝑖𝑛

our thermodynamic feasibility threshold of -10 kJ/mol.
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121

SI Fig. 5 Distribution of  values in both directions for aldehyde dehydrogenases (EC 1.2.1.x). The dashed line ∆𝑟𝐺
'

𝑚𝑖𝑛

represents our thermodynamic feasibility threshold of -10 kJ/mol.

122

123

124

125

126

127

128

129

130

131

7



SI Fig. 6 Distribution of  values in both directions for phosphoryltransferases (EC 2.7.1.x). The dashed line ∆𝑟𝐺
'

𝑚𝑖𝑛

represents our thermodynamic feasibility threshold of -10 kJ/mol.
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SI Fig. 7 Distribution of  values in both directions for glucosyltransferases (EC 2.4.1.x)∆𝑟𝐺
'

𝑚𝑖𝑛
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157

158 3.3 Statistics for feasible and infeasible reactions in the training dataset.

159
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SI Fig. 8 (a) t-stochastic neighbors’ estimation (t-SNE) of thermodynamically feasible, thermodynamically infeasible, 
and synthetically generated negative products that fall under the alcohol dehydrogenase transformation; (b) number of 
all thermodynamically infeasible reactions versus thermodynamically feasible reactions; (c) number of all synthetically 
generated negative reactions versus thermodynamically feasible reactions.



172 4. EVALUATING MODEL PERFORMANCE

173 4.1 Prototyping architecture – fingerprint combinations on training an alcohol 
174 dehydrogenase reaction feasibility classifier.

175 4.2 Exploring various arrangements of molecular fingerprints along reaction feature vectors

176 In this study, we explore different methods to arrange molecular fingerprints of species along 

177 reaction feature vectors. The simplest of these configurations involves simply concatenating 

178 molecular fingerprints of substrates, cofactors on the reactants’ side, products, and cofactors on the 

179 products’ side in ascending as well as descending molecular weights within each category. Since 

180 different reactions involve different numbers of species, each reaction vector is padded with zeros 

181 to 16,384 bits, which is the total number of elements present within the reaction vector representing 

182 the longest reaction within our curated database (SI Fig. 10(a) and 10(b)). In addition to 

183 concatenating all fingerprints together, we also explored performing simple operations onto 

184 molecular fingerprints to represent enzymatic reactions. In one of these configurations, “add then 

185 concatenate”, the element-wise sum of all reactant fingerprints is taken and concatenated with that 

186 of product fingerprints (SI Fig. 10(c)). In another configuration, “add then subtract”, the element 

187 wise of reactant fingerprints is subtracted from that of product fingerprints (SI Fig. 10(d)). In both 

188 of these configurations, paddings were not required. 

189 Two additional fingerprinting configurations were also implemented to serve as negative 

190 controls (SI Fig. 10(e) and (f)). These controls seek to determine if arranging molecular fingerprints 

11

SI Fig. 9 (a) The average area under the precision-recall curve (AUPRC) of alcohol dehydrogenase classifiers deployed 
on a validation set and (b) test set of alcohol dehydrogenase reactions. With 1254 feasible and 1759 infeasible alcohol 
dehydrogenase reactions in total, a stratified train/validation/test split in an 80/10/10 ratio was performed to extract 
training, validation and test sets. All model hyperparameters were optimized on the validation set using a Bayesian 
hyperparameter approach. Reaction fingerprints are created by arranging molecular fingerprints in the order [substrate, 
NAD, product, NADH] for alcohol dehydrogenase reactions in the oxidation direction and [substrate, NADH, product, 
NAD] for alcohol dehydrogenase reactions in the reduction direction.



191 in a standardized manner – as opposed to doing so randomly – truly optimizes model performance. 

192 In the first of these negative controls, the positions of reactant fingerprints are randomized along 

193 the first four ‘slots’ of a reaction’s feature vector. This randomization is then repeated for product 

194 fingerprints, along the next four slots of the reaction feature vector to give a “partially randomized” 

195 feature vector (SI Fig. 10(e)). In the final negative control, the positions of all fingerprints are 

196 completely randomized throughout the reaction feature vector. For both of these negative controls, 

197 if model performance were to degrade, this decline would then confirm that there does, in fact, exist 

198 some dependency and value to the order in which molecular fingerprints are arranged to create 

199 reaction feature vectors. 

200 Another form of negative control was then implemented in which we randomly scrambled 

201 assigned feasibility labels within our training data only. Models were then trained on this 

202 augmented dataset to determine if they would perform well against a test dataset within which the 

203 labels had not been altered. This would again confirm if our classifiers are performing well by 

204 chance or if they are truly learning to capture subtle differences within the training data. These 

205 negative controls are crucial for imbalanced datasets such as ours. Through such rigorous controls, 

206 we validate that the performance of our models is not merely by chance. 

12

SI Fig. 10 Six different configurations for arranging molecular fingerprints along a reaction feature vector are explored 
in this study and depicted here through the example of the monooxygenation of toluene catalyzed by the enzyme toluene-
4-monooxygenase (EC 1.14.13.236). In configurations (a) and (b), primary reactant, primary product, and cofactor 
fingerprints are arranged in terms of ascending and descending molecular weights within categories. In configuration (c), 
the fingerprints of all reactant structures are added in an element-wise fashion and concatenated with the element-wise 
sum of product fingerprints. In configuration (d), the element-wise sum of product fingerprints is subtracted from that of 
reaction fingerprints. Configurations (e) and (f) serve as negative controls to confirm that there in indeed value to the 
order in which molecular fingerprints are arranged along a feature vector and that models are not just performing well by 
random chance. 



207

208 4.3 Additional negative control experiments

209 We implemented another negative control experiment to rigorously confirm the optimal 

210 performance of our feasibility classifier models. Here, assigned feasibility labels (as determined by 

211 thermodynamics and the synthetic generation of negative data) on reactions within our consolidated 

212 training set were randomly scrambled (SI Fig. 11 (a) and (b)). Models were then trained on this 

213 augmented dataset to determine if they would perform well against a test dataset within which 

214 feasibility labels had not been altered. This would again confirm if DORA-XGB was performing 

215 well solely by chance or if it were truly learning to capture subtle differences within reaction data. 

216 Such controls are crucial for imbalanced datasets such as ours because any model that simply 

217 predicts negative labels by default would be accurate 7/8 times anyway. Thus, these controls can 

218 ascertain that models are not being overfit to training data and not merely predicting reactions as 

219 infeasible by default.

220

221

222
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SI Fig. 11 In order to confirm that the performance of trained feasibility classification models is not merely by chance, 
we performed two types of negative control experiments where we expected model performance to decline: (a) in the 
first type of negative control, molecular fingerprints arranged along a reaction’s feature vector are randomly scrambled 
within only the ‘slots’ allocated to reactants and products (partially randomized) as well as throughout the entire feature 
vector (fully randomized); (b) in the second type of control experiment, the configuration in which reaction feature 
vectors are constructed is held constant while the target feasibility labels within the training set are mutated. Feasibility 
models are then trained on these augmented labels to confirm that they will perform poorly on a test dataset in which 
assigned labels have not been mutated.



223

224 4.4 Comparing the performance of individual vs. consolidated classifiers

225
226
227

228

14

SI Fig. 12 In order to determine if it would be more effective to train multiple individual feasibility classifiers specific to 
each class or to train a single, consolidated feasibility classifier for all enzymatic reaction classes, we computed the 
average area under the precision-recall curve (AUPRC) between individual classifiers trained on 33 classes of enzymatic 
reactions and our consolidated classifier. The average AUPRC from individual classifiers was found to be lower than 
that of the consolidated classifier. The top 33 classes of generalized transformations make up for 64.3% of the reactions 
in our dataset.



229 4.5 Performance of consolidated classifiers trained with various cofactor configurations 
230 against the test set.
231

232
233
234
235
236
237
238
239
240
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SI Fig. 13 The average area under the precision-recall curve (AUPRC), precision, recall, and F1 scores of six 
consolidated feasibility classifiers trained on all enzymatic reactions with various feature vector configurations.



252 4.6 Comparing the performance of our alternate reaction center assumption model with the 
253 unreported is negative assumption model.

16
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SI Fig. 14 Our reaction feasibility classifier trained on the “alternate reaction center” assumption receives a higher 
AUPRC score than DeepRFC, another deep-learning based classifier trained with negative data generated under the 
“unreported is negative” assumption. Our in-house “unreported is negative” assumption dataset led to a sharp decline in 
model performance in contrast to our model trained under the “alternate reaction center” assumption.
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264

265 4.7 Performance on newly discovered Escherichia coli reactions.

266

267 SI Table 1. (a) DORA-XGB’s recovery of novel, experimentally validated reactions (30 total) 
268 obtained from an e. coli nontargeted metabolomics dataset; (b) recovery of predicted, plausibly 
269 positive and novel e. coli reactions (40 total) obtained from the same dataset; (c) prediction of 4536 
270 total plausibly negative reactions that were synthetically generated from the 30 experimentally 
271 validated positive e. coli reactions; (d) prediction of 17353 plausibly negative reactions that were 
272 synthetically generated from the 40 plausibly positive e. coli reactions.
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273

274

275 4.8 Filtering out infeasible compounds and reactions in a network expansion

276 4.9 Examining performance drops between test and benchmarking AUPRC of DORA-XGB

277 We realize that there is a considerable performance drop in terms of AUPRC between the 

278 external benchmarking set and the testing set (0.79 vs. 0.92). We highlight that this performance 

279 drop arises because enzymatic transformations that are frequent in the benchmarking set are not 

280 commonly observed in the training, validation, or the testing sets. We encode for enzymatic 

281 transformations in terms of our publicly available reaction rules (or templates). There exist 1224 

282 such unique rules, and they are ordered in terms of the number of known reactions mapped to each 

283 rule, i.e., rule0001 has far more reactions mapped to it (1236 reactions in BRENDA) than rule1224 

284 (only 2 reactions in BRENDA). Consequently, lower-numbered rules represent more common 

285 transformations (e.g., the dehydrogenation of alcohols as encoded in rule0002) than higher-

286 numbered rules (e.g., the hydrolysis of nitrile-containing substrates encoded in rule0243). When 

287 we consider the proportion of reactions that are cumulatively represented by each rule within the 

288 four total sets (training, validation, testing, and benchmarking), we find that this distribution is 

289 nearly identical for the training, testing, and validation sets but distinct for the benchmarking set. 

290 This is expected since we performed our train/ validation/ test splits iteratively on a rule-by-rule 

291 basis and with stratification such that the distribution of positive (feasible) to negative (infeasible) 

292 reactions is retained for each rule within the training, validation, and testing sets. Meanwhile, the 

293 external benchmarking set represents an out-of-distribution sample so it is again expected that that 

294 the cumulative distribution of reactions mapped to each rule in the benchmarking set would be 

19

SI Fig. 15 (a) Number of new reactions and (b) compounds remaining after each generation of a three-step network 
expansion performed by DORA-XGB starting from pyruvic acid. With DORA-XGB, users can either set custom 
thresholds or use the ones reported in this work. A higher threshold would lead to the prediction of few higher confidence 
pathways within short computational runtimes, but this efficiency comes at the cost of filtering out several other potential 
candidate pathways. Meanwhile, a lower threshold would return a larger space of candidate pathways but with longer 
runtimes and greater computational expense.



295 different than that in the training, validation, and testing sets. More crucially, visualizing the 

296 cumulative distribution reveals that there is actually a skew in the benchmarking set towards higher-

297 numbered rules. Put differently, reactions that exhibit rarer transformations occur more frequently 

298 in the benchmarking set than in the training set. Given fewer opportunities to learn such rare 

299 transformations during training, our model performance drops when it confronts these 

300 transformations in benchmarking. 

301

302 SI Fig. 16 Cumulative distribution of reactions mapped to each rule within the training (dashed orange line), validation 
303 (dashed maroon line), testing (dashed blue line), and benchmarking (solid red line) sets.
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304 Instead of a cumulative distribution for each set, we can also plot the distribution of the 

305 number of reactions mapped to each rule normalized by the total number of reactions in that set. 

306 This further confirms that the benchmarking set not only comprises a different frequency 

307 distribution of reactions mapped to each rule when compared to the training, validation, and testing 

308 sets but also a skew towards reactions mapped to higher-numbered rules, i.e., rarer transformation 

309 types. 

310

311 SI Fig. 17 Normalized frequency of reactions mapped to each reaction rule in the (a) training, (b) testing, (c) validation, 
312 and (d) benchmarking sets.
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