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Appendix A: Shape Orbitals for Connectivity Generalization of Entropic Bonding Theory

Here, we provide details for the generalization of entropic bonding theory (EBT) to account for 

the connectivity between different surface locations on the particle. EBT has the following form

𝛽𝑈𝑚(𝑟) = 𝑟 ‒ 2[ln 𝜌𝑝𝑃(𝑟) ‒ 𝛽𝜇𝑝𝑃] +
𝑁

∑
𝑖

𝛽𝑈𝑐𝑜𝑟𝑒(𝑟) (A.1)

[∇2 + 𝛽∇2𝑈𝑚 ‒ (𝛽∇𝑈𝑚)2]𝜌𝑝𝑃 = 𝐸𝜌𝑝𝑃 (A.2)

where  is the pP-NP center-to-center separation,  and  are the density distribution and 𝑟 𝜌𝑝𝑃 𝜇𝑝𝑃

chemical potential of pPs, respectively, and .  is a hard-core repulsion between 𝛽 = 1/𝑘𝑇 𝑈𝑐𝑜𝑟𝑒(𝑟)

pPs and NPs. Solving for the shape orbitals using Eq. A.1 – A.2 employs both of separations of 

variables and power law series expansions that ultimately yields1:

𝑆(𝑢) =
𝑙 ‒ 1

∑
𝑗 = 0

𝑎𝑗[Γ𝑢(𝑢)]𝑗

Γ𝑢(𝑢) = cos4 (𝑢) + sin4 (𝑢)

𝑎𝑗 + 1 =
𝑎𝑗[(𝑗 + 1)(𝑗 + 1/2)] ‒ 2𝑎𝑗 ‒ 1[𝑙2 ‒ 𝑗2]

(𝑗 + 1)(𝑗 + 2)

(A.3)

𝑆(𝑣) =
𝑘 ‒ 1

∑
𝑗 = 0

𝑎𝑗[Γ𝑣(𝑣)]2𝑗

Γ𝑣(𝑣) = cos (𝑣),      |𝑘| < 2(𝑙 ‒ 1)
𝑎𝑗 + 1

𝑎𝑗
=

(2Ω) ‒ 1[16𝑙2 ‒ 4(𝑘 + 1)2]
(𝑘 + 1)2 ‒ (𝑗 + 1)2

(A.4)

𝑆(𝑤) = 𝑤
𝐾𝑝𝑝𝑒

( ‒
2Ω2𝐵𝑤

𝑛 ) 𝑛𝑚

∑
𝑗 = 0

𝑎𝑗𝑤
𝑗

𝑎𝑗 + 1

𝑎𝑗
= (4Ω2𝐵

𝑛 )[ 𝑗 + 𝐾𝑝𝑝 + 1 ‒ 𝑛

(𝑗 + 1)(2𝐾𝑝𝑝 + 2 ‒ 𝑗)]
𝑛𝑚 = 2𝑛 ‒ 4𝐾𝑝 + 1 ‒ 1

(A.5)

𝐾𝑝 = 4Ω[4𝑙2 ‒ (𝑘 + 1)2]
𝐾𝑝𝑝 = 2 ‒ 1( 4𝐾𝑝 + 1 ‒ 1) (A.6)



where , ,  are generalized coordinate variables and are analogous to , , and  in spherical 𝑢 𝑣 𝑤 𝜃 𝜙 𝑟

coordinates. , , and  are the corresponding power law series exponents analogous to , , and 𝑙 𝑘 𝑛 𝑙 𝑚

 from the general solution to Laplace’s equation in spherical coordinates.  defines the distance 𝑛 Ω

from the surface of the NP to its center, normalized by the smallest surface-to-center distance for 

each respective shape. Note that  is dependent on the surface location of the NP. For example, Ω

, , and  for the face, edge and corner location of a cube, respectively.  is a prefactor Ω = 1  2 3 𝐵

that correlates with the magnitude of pP-NP interaction at different values of . The solution 𝜇𝑝𝑃

 is simply the product of Eqs. A.3 – A.6: . This is derived in detail in the 𝜌𝑝𝑃 𝜌𝑝𝑃 = 𝑆(𝑢)𝑆(𝑣)𝑆(𝑤)

original EBT manuscript1. While Eqs. A.3 – A.6 are complex, recasting the generalized 

coordinates into geometries commensurate with the NP shape of interest drastically simplifies the 

set of solutions and bypasses the need to consider higher order terms in the series solutions. 

Specifically, EBT has been shown to accurately capture emergent directional interactions between 

anisotropic particles as well as their assembly behaviors in the “zeroth order” limit of , 𝑙 = 1

, and . This simplifies the solution for  to be  as both 𝑛𝑚 = 0 𝑘 = 0 𝜌𝑝𝑃 𝜌𝑝𝑃(𝑤) = 𝑤
𝐾𝑝𝑝𝑒

( ‒
2Ω2𝐵𝑤

𝑛 )

and  terms reduce to constants.𝑆(𝑢) 𝑆(𝑣)

Borrowing from these findings, we apply the same simplification to the connectivity 

generalization (cEBT). As indicated in the main text, our approach creates a composite set of 

particles to represent each patchy NP in the system: one core, polyhedral particle to represent NP 

geometry and a set of spherical particles placed at their corresponding surface locations to 

represent the patches. Through this lens we can write the composite  as.𝜌𝑝𝑃

𝜌𝑝𝑃(𝑟) = 𝑟
𝐾𝑝𝑝𝑒( ‒ 2Ω2𝐵𝑟) +

𝑀

∑
𝑖 = 1

∑
𝑚

𝑟
𝐾𝑝𝑝,𝑜

𝑝 𝑒( ‒ 2𝐵𝑟𝑝 + 𝐵𝛿𝑚𝑘ℎ[𝑟𝑝 ‒ 𝑟𝑜]2)
(A.7)



The first term in Eq. A.7 accounts for the effect of the NP core as a function of distance away from 

the NP’s center. The second term in Eq. A.7 accounts for contribution from all  patches on the 𝑀

NP. The interior summation within the second term accounts for the effect of connectivity, where 

contribution from the harmonic-like bonding potential only applies between bonds existing in the 

set of  bonds within the system (as indicated by the Kronecker ). The variable  defines the 𝑚 𝛿𝑚 𝑟𝑝

relative distance to the patch from the core NP frame of reference. As a final note, while Eq. A.7 

appears to be purely radially dependent, there is an implicit angular dependence as well built into 

 which takes on different values for different surface location on the core NP. For the second set Ω

of term in Eq. A.7, patches are assumed to be spherical, thus  across all patch particles. Ω = 1

Similarly,  reflects the same limit of  in  (Eq. A.6). The composite  is then 𝐾𝑝𝑝,𝑜 Ω = 1 𝐾𝑝𝑝 𝜌𝑝𝑃

coupled to Eq. A.2 and solved self-consistently to determine the free energy of all relative 

orientations between patchy NPs as well as polymeric NPs discussed in the main text.



Appendix B: Scaling Relationship for Anisotropic Polymers

Here, we derive the scaling relationship for anisotropic polymer from the main text (Eq. 6). We 

start by defining the following conditions for a random walk where there are uneven steps along 

the left versus right direction.

𝑁 = 𝑛𝐿 + 𝑛𝑅 (B.1)

𝑅 = 𝜆𝐿𝑛𝐿 ‒ 𝜆𝑅𝑛𝑅 (B.2)

where  is the total number of steps, and  and  are the number of left and right steps, 𝑁 𝑛𝐿 𝑛𝑅

respectively.  and  are the displacement taken per left versus right step, respectively, and  is 𝜆𝐿 𝜆𝑅 𝑅

the net displacement after  total steps. In the limit of , Eq. B.2 converges to the 𝑁 𝜆𝐿 = 𝜆𝑅 = 1

classical random walk limit. Rearranging Eqs. B.1 and B.2 to define the  and  in terms of , 𝑛𝐿 𝑛𝑅 𝑁

, , and  yields:𝑅 𝜆𝐿 𝜆𝑅

𝑛𝐿 =
𝜆𝑅𝑁 + 𝑅

𝜆𝐿 + 𝜆𝑅
(B.3)

𝑛𝑅 =
𝜆𝐿𝑁 ‒ 𝑅

𝜆𝐿 + 𝜆𝑅
(B.4)

Eqs B.3 and B.4 now readily plugs into the binomial distribution to define the probability of having 

a displacement :𝑅

𝑃(𝑅) =
𝑁!

𝑛𝐿!𝑛𝑅!(1
2)𝑁 (B.5)

Taking the natural log of each side, applying Stirling’s approximation ( ), and ln 𝑁! ~ 𝑁ln 𝑁 ‒ 𝑁

grouping terms eventually yields:

ln 𝑃(𝑅) = 𝑁ln [(𝜆𝐿 + 𝜆𝑅

2 )( 1

𝜆
𝜆𝑅
𝑅 𝜆

𝜆𝐿
𝐿

)(𝜆𝐿 + 𝜆𝑅) ‒ 1] (B.5)



+ [ 𝑅
𝜆𝐿 + 𝜆𝑅

][ln (𝜆𝐿

𝜆𝑅
) + 𝜆𝐿 ‒ 𝜆𝑅] + [ 𝑅2

2𝑁][𝜆𝐿 + 𝜆𝑅 ‒ 4

𝜆𝐿 + 𝜆𝑅
]

as a consistency check, in the limit of , the first and second term in Eq. B.5 converge 𝜆𝐿 = 𝜆𝑅 = 1

to  and we get:0

ln 𝑃(𝑅) =‒
𝑅2

2𝑁
(B.6)

which is the classical result for the idealized random walk. For convenience, we define the 

following:

Γ = (𝜆𝐿 + 𝜆𝑅

2 )( 1

𝜆
𝜆𝑅
𝑅 𝜆

𝜆𝐿
𝐿

)(𝜆𝐿 + 𝜆𝑅) ‒ 1

𝑎 =‒ [ln (𝜆𝐿/𝜆𝑅) + 𝜆𝐿 ‒ 𝜆𝑅

𝜆𝐿 + 𝜆𝑅 ]
𝑏 =‒ [ 𝜆𝐿 + 𝜆𝑅 ‒ 4

2𝑁(𝜆𝐿 + 𝜆𝑅)]
Using the above definition and taking the exponential of both sides in Eq. B.6 yields:

𝑃(𝑅) = Γ𝑁𝑒 ‒ 𝑎𝑅 ‒ 𝑏𝑅2 (B.7)

Enforcing that the integral over all space of Eq. B.7 must equal  and solving for the corresponding 1

normalization constant results in the generalized random walk probability distribution:

𝑃(𝑅) = (𝑏
𝜋)1/2𝑒 ‒ 𝑎2/4𝑏 𝑒 ‒ 𝑎𝑅 ‒ 𝑏𝑅2

(B.8)

Integrating Eq. B.8 to obtain the average squared displacement  gives〈𝑅2〉

〈𝑅2〉 = (1
8){4𝑁2[ln (𝜆𝐿/𝜆𝑅) + 𝜆𝐿 ‒ 𝜆𝑅

𝜆𝐿 + 𝜆𝑅 ‒ 4 ]2 ‒ 4𝑁[ 𝜆𝐿 + 𝜆𝑅

𝜆𝐿 + 𝜆𝑅 ‒ 4]} (B.9)

Again, as a consistency check, Eq. B.9 converges to , which is the classical ideal 〈𝑅2〉 = 2 ‒ 1𝑁

random walk result. Taking the 3D limit of Eq. B.8 and solving for  results in:〈𝑅2〉

〈𝑅2〉 = 4 ‒ 1 ∑
𝑖 𝜖 {𝑥,𝑦,𝑧}

4𝑁2[ln (𝜆𝐿/𝜆𝑅) + 𝜆𝐿 ‒ 𝜆𝑅

𝜆𝐿 + 𝜆𝑅 ‒ 4 ]2
𝑖 ‒ 4𝑁[ 𝜆𝐿 + 𝜆𝑅

𝜆𝐿 + 𝜆𝑅 ‒ 4]𝑖 (B.10)



We now simplify Eq. B.10 to derive the scaling relationship defined in Eq. 6 of the main text. 

Firstly, we define a scaled step size relative to a rightward step: that is,  and . Note 𝜆𝑅 ~ 1 𝜆𝐿 𝜖 [0,1]

that the derivation of Eq. B.1 – B.10 can choose to factor out  instead of . This will flip ratio 𝜆𝐿 𝜆𝑅

terms of the form  that appears in the above equations, allowing for the opposing choice of 𝜆𝐿/𝜆𝑅

 and . In other words, the system is symmetric. Applying this definition reduces 𝜆𝐿 ~ 1 𝜆𝑅 𝜖 [0,1]

the numerator of bracketed term associated with  term in Eq. B.10 to:𝑁2

ln (𝜆𝐿/𝜆𝑅) + 𝜆𝐿 ‒ 𝜆𝑅 = [ln 𝜆𝐿]2[1 +
𝜆𝐿 ‒ 1

ln 𝜆𝐿
]2 (B.11)

To a first order approximation,  for . Plugging this approximation into Eq. 

𝜆𝐿 ‒ 1

ln 𝜆𝐿
 ~ 𝜆1/2

𝐿 𝜆𝐿 𝜖 [0,1]

B.11 yields:

[ln 𝜆𝐿]2[1 +
𝜆𝐿 ‒ 1

ln 𝜆𝐿
]2 ~ [𝜆𝐿 ‒ 1

𝜆1/2
𝐿

]2[1 + 𝜆1/2
𝐿 ]2

(B.12)

Combining Eq. B.12 with the denominator of the bracketed term associated with  results in 𝑁2

[ 1
𝜆𝐿

][𝜆𝐿 ‒ 1

𝜆𝐿 ‒ 3]2[1 + 𝜆1/2
𝐿 ]2 (B.13)

By inspection, Eq. B.13 scales as  for Simplifying Eq. B.10 with the 𝜆 ‒ 1
𝐿 ‒ 1 𝜆𝐿 𝜖 [0,1]. 

approximated expression yields

〈𝑅2〉 = ∑
𝑖 𝜖 {𝑥,𝑦,𝑧}

𝑁2[ 1
𝜆𝐿

‒ 1]2
𝑖 ‒ 𝑁[𝜆𝐿 + 1

𝜆𝐿 ‒ 3]𝑖 (B.14)

The term associated with  is of unitary order ( )  for small values of , thus we can 𝑁 ‒ 1 𝜆𝐿

approximate Eq. B.10 to be

〈𝑅2〉 ~ 𝑁2[1 ‒ 𝜆𝐿,𝑥

𝜆𝐿,𝑥
+

1 ‒ 𝜆𝐿,𝑦

𝜆𝐿,𝑦
+

1 ‒ 𝜆𝐿,𝑧

𝜆𝐿,𝑧
] + 𝑁 (B.15)



where , , and  defined the scaled leftward displacement (assuming ). For 3D 𝜆𝐿,𝑥 𝜆𝐿,𝑦 𝜆𝐿,𝑧 𝜆𝑅 ~ 1

systems, we are interested in the composite product . Rearranging the bracketed terms 𝜆𝐿,𝑥𝜆𝐿,𝑦𝜆𝐿,𝑧

in Eq. B.15 yields

𝜆𝐿,𝑥𝜆𝐿,𝑦 + 𝜆𝐿,𝑥𝜆𝐿,𝑧 + 𝜆𝐿,𝑦𝜆𝐿,𝑧 ‒  3𝜆𝐿,𝑥𝜆𝐿,𝑦𝜆𝐿,𝑧

𝜆𝐿,𝑥𝜆𝐿,𝑦𝜆𝐿,𝑧
(B.16)

Since each  ranges between and , the double product terms are generally larger than the triple 𝜆𝐿 0 1

product terms:  , with a max possible value of . As such we can take the 𝜆𝐿,𝑥𝜆𝐿,𝑦 ≫ 𝜆𝐿,𝑥𝜆𝐿,𝑦𝜆𝐿,𝑧 1

approximation that the double product terms are of unitary order relative to the triple product term:

1 ‒ 𝜆𝐿,𝑥

𝜆𝐿,𝑥
+

1 ‒ 𝜆𝐿,𝑦

𝜆𝐿,𝑦
+

1 ‒ 𝜆𝐿,𝑧

𝜆𝐿,𝑧
 ~

1 ‒ 𝜆𝐿,𝑥𝜆𝐿,𝑦𝜆𝐿,𝑧

𝜆𝐿,𝑥𝜆𝐿,𝑦𝜆𝐿,𝑧
(B.17)

The triple product term  essentially represents the product of the biased step sizes along 𝜆𝐿,𝑥𝜆𝐿,𝑦𝜆𝐿,𝑧

a 3D path (on a lattice) that a random walker can take. On the surface of an anisotropic particle, 

this is equivalent to the product of the differential step that a trajectory can take. Locations of 

higher curvature will exhibit larger values relative to lower curvature surface sites. For example, 

a face location on a cube will have the lowest value of  (in fact, ) since 𝜆𝐿,𝑥𝜆𝐿,𝑦𝜆𝐿,𝑧 𝜆𝐿,𝑥𝜆𝐿,𝑦𝜆𝐿,𝑧 = 0

it is not possible to step backwards into the face of a cube. Conversely,  is largest at the 𝜆𝐿,𝑥𝜆𝐿,𝑦𝜆𝐿,𝑧

vertex of the cube since it can freely step only any direction without experiencing any confinement: 

. For this reason, we define a parameter  that corresponds to a scaled surface-to-𝜆𝐿,𝑥𝜆𝐿,𝑦𝜆𝐿,𝑧 = 1 Λ

center distance for any anisotropic particle.  and is defined such that the vertex furthest Λ 𝜖 [0,1]

away from the particle’s center is set to  and the location corresponding to the center of the 1

particle’s largest face is set to . For the case of a spherically symmetric particles,  for all 0 Λ = 1

surface locations. This parameterization allows us to map the discrete lattice steps from the random 



walk derivation to the surface of any arbitrarily shaped particle: . To 

1 ‒ 𝜆𝐿,𝑥𝜆𝐿,𝑦𝜆𝐿,𝑧

𝜆𝐿,𝑥𝜆𝐿,𝑦𝜆𝐿,𝑧
 ~

1 ‒ Λ
Λ

simplify Eq. B.15 to form more analogous to traditional polymer scaling theory, we first define 

the convenience term . Introducing this to Eq. B.15 and setting the Γ ‒ 1
𝑒𝑓𝑓 = Λ𝑒𝑓𝑓 = Λ ‒ 1(1 ‒ Λ)

right-hand side equal to  yields:𝑁𝑣

〈𝑅2〉 ~ 𝑁𝑣 ~ 𝑁2Γ ‒ 1
𝑒𝑓𝑓 + 𝑁 (B.18)

Solving Eq. B.18 for the exponent  gives:𝑣

𝑣 ~ 1 + [ln 𝑁] ‒ 1[ln (1 + 𝑁/Γ𝑒𝑓𝑓)] (B.19)

We can apply L’Hopital’s Rule to the second term on the right-hand side of Eq. B.19 to obtain:

𝑣 ~ 1 + 𝑁(𝑁 + Γ𝑒𝑓𝑓) ‒ 1 (B.20)

Plugging in that  and simplifying gives:Γ ‒ 1
𝑒𝑓𝑓 = Λ𝑒𝑓𝑓

𝑣 ~ 1 +  Λ𝑒𝑓𝑓𝑁(Λ𝑒𝑓𝑓𝑁 + 1) ‒ 1 (B.21)

As a final step, we note that  scales analogously to  Λ𝑒𝑓𝑓𝑁(Λ𝑒𝑓𝑓𝑁 + 1) ‒ 1 𝛼Λ𝑒𝑓𝑓(Λ𝑒𝑓𝑓 + 1) ‒ 1

where  is an undetermined multiplier that will be solved to match with known scaling behaviors 𝛼

for . Making this approximation and plugging this into Eq. B.21 gives𝑣

𝑣 ~ 1 +  𝛼Λ𝑒𝑓𝑓(1 + Λ𝑒𝑓𝑓) ‒ 1 (B.22)

Lastly, we plug-in  and simplify to get:Λ𝑒𝑓𝑓 = Λ ‒ 1(1 ‒ Λ)

𝑣 ~ (1 ‒ 𝛼) + 𝛼Λ (B.23)

For the case of a face-face bonded anisotropic particle (i.e. face-face connected cubes) we know 

that the scaling behavior is rigid-rod-like ( ). Here,  and solving for  yields, . 𝑣 = 2 Λ = 0 𝛼 𝛼 =‒ 1



Alternatively, one can choose to match exponent for the gaussian limit  for . However, 𝑣 = 1 Λ = 1

this will result in the trivial solution of  and thus is not useful for to determine the value of 𝛼 = 𝛼

the undetermined multiplier. Plugging  into Eq. B.18 yields𝛼

〈𝑅2〉 ~ 𝑁2 ‒ Λ (B.24)

or, in a more recognizable form:

〈𝑅2〉1/2 ~ 𝑁(2 ‒ Λ)/2 (B.25)

Eq. B.25 is what is reported in the main text. As a final consistency check. Our parameterization 

of  converges to  in the limit of either a spherical particle or a sharp vertex for any anisotropic Λ Λ

shape. Vertex-vertex connected particles freely sweep out their circumsphere and thus behave akin 

to spherical particles. In both these cases, Eq. B.25 predicts that the scaling relationship converges 

to , which is the classical result for a gaussian polymer chain. This indicates that 〈𝑅2〉1/2 ~ 𝑁1/2

the derived relationship for end-to-end distance of polymeric chains with anisotropic monomers 

converges to the well-established spherical bead-spring behaviors.



Appendix C: Model Validation for Spherical Monomeric Subunits

To ensure that our patchy models can reproduce known chain conformational behaviors 

for polymers composed of spherically symmetric monomers, we first characterize the patchy 

sphere systems and measure the end-to-end scaling exponent  ( ) for small ( ), 𝑣 𝑅 ~ 𝑁𝑣 𝑟𝑜 = 0.1𝜎𝑖𝑛

medium ( )and large ( ) patch sizes. 𝑟𝑜 = 1.0𝜎𝑖𝑛 𝑟𝑜 = 5.0𝜎𝑖𝑛

Harmonic Bonding Potential: In the limit of large patches, monomers are so far apart that they 

do not feel the presence of their bonded neighbors, resulting in the well-known gaussian scaling 

behavior: . Reduction of the to medium patch sizes brings particles close together 𝑣 = 0.53 ± 0.04

and within range of excluded volume interactions between neighbors. This results in a self-

avoiding walk behavior (good solvent), yielding the classical scaling exponent of 

. Further decreases in bond length to small patch sizes produces a stiff bond where 𝑣 = 0.59 ± 0.02

particles cannot rotate freely, resulting a high degree of chain extension with scaling exponent of 

. This high level of rigidity reflects the colloidal polymer limit where bonds are 𝑣 = 0.70 ± 0.03

inflexible as the patches mediating bond formation are small compared to the core particle size. 

Results from Fig. D1 for patchy spheres indicate that our MC model can reproduce the known 

behaviors for traditional polymers and can systematically be employed to explore both ideal and 

self-avoiding chain conformations.

FENE Bonding Potential: The chain lengths considered for these simulations are N = 40, 50, 60, 

70, 80, 90, 100, 110, 120, 140, 150, 160, 170, 180, 190, 200. The particles are defined as spheres 

of , connected by FENE-WCA bonds with parameters , analogous to 𝜎 = 40 𝑘 = 30,  𝑟0 = 1.725𝜎

the bonds defined between patches in the anisotropic-monomer counterparts. The simulation is 

performed in an NVT ensemble (implicit-solvent), and run at a temperature of . 𝑘𝐵𝑇 = 0.9

Monomers not bonded to each other repel each other as hard particles through the WCA potential. 



The integration step-size is  simulation time units. The simulation is run for a total of 𝑑𝑡 = 0.001

50,000 simulation time units, from which long-time scaling statistics are computed and averaged 

across 3 distinct runs. Measured scaling exponents from FENE potential simulations for a single 

chain of spherical monomers connected yield a scaling exponent of 0.61 0.01.±  

Figure D1. Polymer with Spherical Monomeric Subunits. End-to-end distance scaling exponent 
 ( ) for chains constructed from patchy spheres with different patch sizes. We observe a 𝑣 𝑅 ~ 𝑁𝑣

transition from rod-like to self-avoiding to ideal chain behaviors with increasing patch sizes. Inset 
show schematic of bond location and bond length definition for patchy spheres. Bond locations 
are represented by blue spheres.



Appendix D: cEBT Calculations for 2D Squares, Pentagon, and Hexagons

Figure D1. cEBT Energy Surface for 2D Polygons. a) Square, b) pentagon, and c) hexagon. 
Relative orientations between two shapes are indicated by the closest point of contact on the 
surface of each respective triangle (indicated by shape factors  and ). Red points indicate the Ω1 Ω2

patch location. Free energy surface for edge-edge and vertex-vertex connected polygons with patch 
size of 0.15 . All results indicate that a non-trivial vertex-edge motif is the thermodynamically 𝑠𝑁𝑃

stable configuration, breaking away from both the expected tip-tip and edge-edge relative 
orientational ordering. All insets plot the lowest energy configuration between the bonded triangles 
and red stars indicate the location of the stable configuration on the free energy landscape.





Appendix E: cEBT Calculations for 3D Octahedra and Tetrahedra

Figure E1. cEBT Prediction for 3D Octahedra and Tetrahedra. a) All pairwise relative 
orientations indicated are computed in cEBT calculations. Equilibrium predictions are shown for 
small (S) and large (L) patches b) octahedra and d) tetrahedra for face-face, edge-edge, and vertex-
vertex connectivity. Visualization of the bonding orbitals are shown in c) for octahedra and e) for 
tetrahedra. In all cases, the lowest energy configuration and  are visualized and compared 𝐸𝑏𝑜𝑛𝑑

between small patches and large patches (analogous in style to Fig. 3 in main text).



Appendix F: Simulation Snapshots and Scaling for Polymers with Octahedral Subunits

Fig. F1. Polymers with Octahedral Monomeric Subunits. Simulation snapshots of harmonically 
bonded octahedral NPs for small and medium patch sizes for a) vertex-vertex bonded NPs and b) 
face-face bonded NPs. c) Simulation snapshot of FENE bonded octahedral NPs (small patch size) 
for both face-face and vertex-vertex bonding. d)  vs  scaling fits for face-face and vertex-𝑅𝑔 𝑁
vertex bonded polymeric chain of octahedra for small and medium patch sizes across both FENE 
and harmonic (HR) bonding potential simulations.



Appendix G: Simulation Snapshots and Scaling for Polymers with Tetrahedral Subunits

Fig. G1. Polymers with Tetrahedral Monomeric Subunits. Simulation snapshots of 
harmonically bonded tetrahedral NPs for small and medium patch sizes for a) vertex-vertex bonded 
NPs and b) face-face bonded NPs. c) Simulation snapshot of FENE bonded tetrahedral NPs (small 
patch size) for both face-face and vertex-vertex bonding. d)  vs  scaling fits for face-face and 𝑅𝑔 𝑁
vertex-vertex bonded polymeric chain of tetrahedra for small and medium patch sizes across both 
FENE and harmonic (HR) bonding potential simulations.



Appendix H: FENE Simulation Snapshots and Scaling for Edge-Edge Bonded Polymers

Fig. H1. Polymers with Edge-Edge Bonded Polyhedral Monomeric Subunits. a) Simulation 
snapshots of edge-edge bonded cubic, octahedral, and tetrahedral NPs using the FENE. b)  vs 𝑅𝑔

 scaling fits for edge-edge bonded polymeric chain of cubic, octahedral, and tetrahedral NPs.𝑁



Appendix I: Scaling Exponent Data from cEBT and Simulations

Table I1. Scaling Exponents from Theory and Simulation

Monomer 
Geometry

Bond Length 
(Patch Size)

Bond 
Type

Bond 
Potential

Scaling 
Exponent 

(Simulation)

Scaling 
Exponent 
(Theory)

Tetrahedron Small VV Harmonic 0.58 ± 0.008 0.59
Tetrahedron Medium VV Harmonic 0.58 ± 0.005 0.57
Tetrahedron Large VV Harmonic 0.51 ± 0.007 0.50
Tetrahedron Small FF Harmonic 0.69 ± 0.009 0.67
Tetrahedron Medium FF Harmonic 0.60 ± 0.011 0.61
Tetrahedron Large FF Harmonic 0.51 ± 0.005 0.51
Octahedron Small VV Harmonic 0.58 ± 0.023 0.58
Octahedron Medium VV Harmonic 0.59 ± 0.003 0.55
Octahedron Large VV Harmonic 0.52 ± 0.003 0.52
Octahedron Small FF Harmonic 0.87 ± 0.032 0.90
Octahedron Medium FF Harmonic 0.59 ± 0.001 0.60
Octahedron Large FF Harmonic 0.51 ± 0.003 0.51

Cube Small VV Harmonic 0.62 ± 0.029 0.63
Cube Medium VV Harmonic 0.60 ± 0.011 0.57
Cube Large VV Harmonic 0.53 ± 0.003 0.52
Cube Small FF Harmonic 0.95 ± 0.012 0.91
Cube Medium FF Harmonic 0.59 ± 0.024 0.57
Cube Large FF Harmonic 0.52 ± 0.006 0.52

Tetrahedron Small VV FENE 0.56 ± 0.016 0.55
Tetrahedron Small EE FENE 0.56 ± 0.016 0.56
Tetrahedron Small FF FENE 0.56 ± 0.021 0.53
Octahedron Small VV FENE 0.56 ± 0.015 0.55
Octahedron Small EE FENE 0.61 ± 0.015 0.62
Octahedron Small FF FENE 1.00 ± 0.000 0.97

Cube Small VV FENE 0.60 ± 0.020 0.59
Cube Small EE FENE 0.62 ± 0.020 0.63
Cube Small FF FENE 1.00 ± 0.000 0.96

VV: vertex-vertex,           EE: edge-edge,           FF: face-face
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