Supplementary Information

for

Accelerating Multicomponent Phase-Coexistence

Calculations with Physics-informed Neural Networks

Satyen Dhamankar,^{†,‡} Shengli Jiang,^{†,‡} and Michael A. Webb^{*,†}

†*Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ*

08544, USA

‡*These authors contributed equally to this work.*

E-mail: <mawebb@princeton.edu>

Contents

S1 Additional optimized phase diagrams

Figure S1: **Additional coexistence curves produced with the post-ML optimization strategy.** The results are obtained using the PI model inference trained with full training data to warm-start Newton-CG optimization. The background color in all phase diagrams denotes the true phase: gray (one-phase), blue (two-phase), and red (three-phase). The scatter points indicate the predicted phase splits for a given initial composition. Blue and orange scatter points indicate two-phase coexistence curves, with the yellow dashed line denoting an example tie line. The vertices of the red triangle indicate three-phase coexistence points. The system parameters $[\chi_{AB}, \chi_{BC}, \chi_{AC}, v_A, v_B, v_C]$, for the top row, from left to right are [1.0, 2.0, 1.5, 1.5, 1.5, 1.5], [1.0, 2.0, 2.0, 2.0, 1.5, 1.0], [1.5, 1.5, 1.5, 1.5, 2.0, 1.5], and $[1.5, 1.5, 2.0, 1.5, 1.5, 2.0]$. For the bottom row, the parameters from left to right are [2.0, 1.5, 1.5, 2.0, 1.5, 1.5], [2.0, 2.0, 1.5, 2.0, 1.5, 1.5], [2.0, 1.5, 1.5, 2.0, 1.5, 2.0], and $[2.0, 2.0, 2.0, 2.0, 1.5, 1.5]$.

Figure S2: **Baseline model performance in phase-coexistence prediction with 10% of training data**. **a)** Classification of the number of coexisting phases. The background color in all phase diagrams denotes the true phase: gray (one-phase), blue (two-phase), and red (threephase). The scatter points indicate the predicted phase splits for a given initial composition. Colors in the legend denote the types of predicted splits. **b)** Predicted coexistence curves. Blue and orange scatter points indicate two-phase coexistence curves, with the yellow dashed line denoting an example tie line. The vertices of the red triangle indicate threephase coexistence points. **c)** Coexistence curves produced with the post-ML optimization strategy. The results are obtained using ML inference to warm-start Newton-CG optimization.

Figure S3: **Baseline model performance in phase-coexistence prediction with full training data**. **a)** Classification of the number of coexisting phases. The background color in all phase diagrams denotes the true phase: gray (one-phase), blue (two-phase), and red (three-phase). The scatter points indicate the predicted phase splits for a given initial composition. Colors in the legend denote the types of predicted splits. **b)** Predicted coexistence curves. Blue and orange scatter points indicate two-phase coexistence curves, with the yellow dashed line denoting an example tie line. The vertices of the red triangle indicate three-phase coexistence points. **c)** Coexistence curves produced with the post-ML optimization strategy. The results are obtained using ML inference to warm-start Newton-CG optimization.

Figure S4: **PI model performance in phase-coexistence prediction with 10% of training data**. **a)** Classification of the number of coexisting phases. The background color in all phase diagrams denotes the true phase: gray (one-phase), blue (two-phase), and red (three-phase). The scatter points indicate the predicted phase splits for a given initial composition. Colors in the legend denote the types of predicted splits. **b)** Predicted coexistence curves. Blue and orange scatter points indicate two-phase coexistence curves, with the yellow dashed line denoting an example tie line. The vertices of the red triangle indicate three-phase coexistence points. **c)** Coexistence curves produced with the post-ML optimization strategy. The results are obtained using ML inference to warm-start Newton-CG optimization.

Figure S5: **PI+ model performance in phase-coexistence prediction with 10% of training data**. **a)** Classification of the number of coexisting phases. The background color in all phase diagrams denotes the true phase: gray (one-phase), blue (two-phase), and red (three-phase). The scatter points indicate the predicted phase splits for a given initial composition. Colors in the legend denote the types of predicted splits. **b)** Predicted coexistence curves. Blue and orange scatter points indicate two-phase coexistence curves, with the yellow dashed line denoting an example tie line. The vertices of the red triangle indicate three-phase coexistence points. **c)** Coexistence curves produced with the post-ML optimization strategy. The results are obtained using ML inference to warm-start Newton-CG optimization.

Figure S6: **PI+ model performance in phase-coexistence prediction with full training data**. **a)** Classification of the number of coexisting phases. The background color in all phase diagrams denotes the true phase: gray (one-phase), blue (two-phase), and red (three-phase). The scatter points indicate the predicted phase splits for a given initial composition. Colors in the legend denote the types of predicted splits. **b)** Predicted coexistence curves. Blue and orange scatter points indicate two-phase coexistence curves, with the yellow dashed line denoting an example tie line. The vertices of the red triangle indicate three-phase coexistence points. **c)** Coexistence curves produced with the post-ML optimization strategy. The results are obtained using ML inference to warm-start Newton-CG optimization.

Location	Image	$\chi_{\rm AB}$	$\chi_{\rm BC}$	χ_{AC}	$v_{\rm A}$	$v_{\rm B}$	$v_{\rm C}$
Fig. $3(a)$ leftmost	ż ್ಧೆ ್ಥ	1.0	1.0	2.0	1.5	1.0	2.0
Fig. $3(a)$ center-left	Óι 0.6 0.4 0.2 $\sigma_{\rm g}$ ್ಧ ę	1.5	1.5	1.0	2.0	2.0	1.5
Fig. $3(a)$ center-right	0.6 ş ್ಣ	1.5	2.0	2.0	1.5	1.5	1.0
Fig. 3(a) rightmost	0.6 0.4 0.2 $\frac{1}{\sqrt{2}}$ () ू ್ಥೆ ್ಥ ్ల	1.531	1.869	1.477	1.739	1.497	1.975
Fig. $5(a)$ top-left	$\phi_{\rm A}$ 0.8 0.6 0.4 0.2 $\frac{1}{3}$ \mathcal{E} $\sigma_{\rm g}$ ू ್ಥೆ	1.0	1.0	2.0	1.0	1.5	1.5
Fig. $5(a)$ center-left	ФA 0.8 0.6 0.4 0.2 $\mathcal{A}^{\mathcal{S}^{\mathcal{S}}}$ \mathcal{O}^2 $\frac{1}{\sqrt{2}}$ $\mathcal{O}_\mathcal{O}$ ę ॄ	1.5	1.0	2.0	1.5	2.0	2.0
Fig. $5(a)$ bottom-left	$\phi_{\rm A}$ 0.8 0.6 0.4 0.2 $\frac{1}{\sqrt{6}}$ 0 \mathcal{S} $\mathcal{O}_{\mathcal{O}}$ ्र °, $\mathscr{C}_{\!\scriptscriptstyle\heartsuit}$	1.5	1.5	2.0	1.5	1.5	2.0

Table S1: Parameters for representative systems depicted in main text figures.

Location	Image	$\chi_{\rm AB}$	$\chi_{\rm BC}$	χ_{AC}	$v_{\rm A}$	$v_{\rm B}$	$v_{\rm C}$
Fig. $6(a)$ leftmost	0.8 0.6 0.2 ES. े हु 욧	1.5	1.0	1.0	1.5	2.0	2.0
Fig. $6(a)$ center-left	0.8 0.6 टु े हु ÷, ್ಥೆ 2.	2.0	2.0	2.0	$1.0\,$	2.0	1.0
Fig. $6(a)$ center-right	Φa 0.8 0.6 0.4 0.2 ू ्रे $\sigma_{\rm g}$ ु ę ್ಥ	2.0	2.0	1.5	2.0	2.0	1.5
Fig. $6(a)$ rightmost	0.8 0.6 0.4 0.2 ू ø, 名	1.5	2.0	1.5	1.5	2.0	2.0

Table S2: Parameters for representative systems depicted in main text figures (continued).

S2 Phase classification confusion matrices

Figure S7: **Confusion matrices for the predicted number of equilibrium phases using the baseline model with a)** 10% of training data, and **b)** with full training data. Diagonal entries represent correctly classified instances, while off-diagonal entries represent misclassifications.

Figure S8: **Confusion matrices for the predicted number of equilibrium phases using the PI model with a)** 10% of training data, and **b)** with full training data. Diagonal entries represent correctly classified instances, while off-diagonal entries represent misclassifications.

Figure S9: **Confusion matrices for the predicted number of equilibrium phases using the PI+ model with a)** 10% of training data, and **b)** with full training data. Diagonal entries represent correctly classified instances, while off-diagonal entries represent misclassifications.

S3 Equilibrium composition prediction parity plots

Figure S10: **Parity plot for predicted equilibrium composition using the baseline model with 10% of training data.** The diagonal dashed line represents perfect performance.

Figure S11: **Parity plot for predicted equilibrium composition using the PI model with 10% of training data.** The diagonal dashed line represents perfect performance.

Figure S12: **Parity plot for predicted equilibrium composition using the PI model with full training data.** The diagonal dashed line represents perfect performance.

Figure S13: **Parity plot for predicted equilibrium composition using the PI+ model with 10% of training data.** The diagonal dashed line represents perfect performance.

Figure S14: **Parity plot for predicted equilibrium composition using the PI+ model with full training data.** The diagonal dashed line represents perfect performance.

S4 Post-ML optimization performance

Table S3: **Convergence time and success rate of equilibrium composition prediction with post-ML Newton-CG optimization.** Mean values are reported with standard errors in parentheses. The best result is highlighted in bold and underlined.

S5 Impact of Weighting Parameters on the PI+ Loss Function

Table S4: **Impact of weighting parameters in the loss function (Eq. 15) on the performance of the PI+ model.** The rows are ranked by the mean of the sum of equilibrium composition regression R^2 and phase classification F_1 . The parameters used in this study is highlighted in bold and demonstrates statistically equivalent performance to other top-performing parameters. The PI model without physics-informed loss is indicated with an underscore. Performance deteriorates as $\lambda_{\rm f}$ increases, while the impact of other parameters is minor.

Table S5: **Impact of weighting parameters in the loss function (Eq. 15) on the performance of the PI+ model (continued).** The rows are ranked by the mean of the sum of equilibrium composition regression R^2 and phase classification F_1 . The parameters used in this study is highlighted in bold and demonstrates statistically equivalent performance to other topperforming parameters. The PI model without physics-informed loss is indicated with an underscore. Performance deteriorates as $\lambda_{\rm f}$ increases, while the impact of other parameters is minor.

