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Abbreviations and nomenclature

'H nuclear magnetic resonance ("H NMR)
Poly(B-benzyl-L-aspartate) (PBLA)
a,w-Bis(amine)poly(ethylene glycol) (PEG)
Degree of polymerization (DP)
1,6-hexamethylene diisocyanate (HDI)
Polyurea (PU)

Peptide-polyurea hybrids (PPUs)
Cellulose nanocrystals (CNCs)

Gel permeation chromatography (GPC)
Atomic force microscopy (AFM)
Poly(methyl methacrylate) (PMMA)
Nanocellulose (NC)

The following nomenclature was utilized. An-X and An-X/CNCY were used for the PPUs
and the PPU/CNC nanocomposites, respectively, where A indicates non-chain extended
peptide-polyurea hybrids consisting of PBLA-b-PEG-b-PBLA as the soft segment, n is the
peptide repeat length (21), X is the peptide weight fraction in the resultant sample (20 or
40 wt%), and Y is CNC content (wt%). The control film without PBLA was denoted by

PEG-HDI PU.
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Figure S1. "H NMR spectrum of PBLA-b-PEG-b-PBLA triblock recorded in dimethyl
sulfoxide (DMSO)-ds. The PBLA repeat length or the degree of polymerization of the
PBLA block (n) was determined from the integration ratio of resonance corresponding to
PEG block at & 3.9 ppm and PBLA block at & ~ 5.5 ppm. The peak at & 3.9 ppm
corresponding to the PEG backbone was used as a reference peak, with the integration
value of this peak set to 188 (x=47), as identified from end group analysis of the PEG
homopolymer (~ 2,000 g/mol). The relative DP ratio of PEG(x)/PBLA(n) is ~2, indicating
that the PEG block has approximately double the repeat units compared to the PBLA
block in the resulting triblock copolymer.
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(B) PBLA? M, o
(wt%) (kg mol')
PEG-HDI PU 0 118.6 3.0
A21-20 20 57.0 2.9
A21-40 40 486 25

a Determined from Equation S1.
b Calculated from GPC using DMAc/0.5 wt% of LiBr as the eluent and PMMA as standards.

Figure S2. (A) GPC traces for the synthesized PEG-HDI PU (control) and PPUs (A21-20
and A21-40) (B) Table summarizing the PBLA weight fraction, number-average molecular
weight (Mp) and dispersity (D) of the synthesized control and PPUs.

Equation S1. PBLA content for PPU samples
wt% (PBLA) = 100 x (

XMppLa )
XMppra + YMpgg + zMyp;

where X, y and z are the molar quantities of the PBLA, PEG, and HDI, respectively, and
MesLa, Mpec and Mup; are the molecular weights of PBLA, PEG and HDI, respectively.
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Figure S3. Magnified AFM phase images of the surface of dried PPU and PPU/CNC

nanocomposite films (1 x1 ym). Yellow circles indicate the interconnected rods.



Mathematical model to predict Young’s modulus

The Halpin-Tsai Model' is used to predict the mechanical properties of
composites containing randomly oriented nanofibers. This model excludes filler-filler
interactions, assuming that fillers are dispersed homogeneously in a polymer matrix via
ideal filler-matrix interactions. The extent of reinforcement is determined by the following
factors: 1) individual mechanical properties of the pristine matrix and the filler material, 2)
the filler aspect ratio, 3) the degree of filler alignment, and 4) the filler volume fraction.
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Where E indicates Young’s modulus: E; is longitudinal modulus E, transverse
modulus, and E  is the modulus of a randomly oriented composite. The subscripts m, f,
and c are assigned to the matrix, filler, and composite, respectively. L/D is the filler aspect
ratio (i.e., the ratio of the longest dimension (length) to the shortest dimension (diameter)).
a is defined as the weight fraction. ¢, is the volume fraction of the filler.

The Percolation model?? describes systems exhibiting strong filler-filler
interactions, yielding a rigid network above a critical filler fraction (i.e., percolation
threshold). Above the percolation threshold (¢;), the modulus of the composite (E,) is
mostly determined by the rigidity of the filler network (E).
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For simplicity, it is assumed that the filler distribution is isotropic, and the aspect
ratio is fixed to calculate ¢, using the equation below.
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Figure S4. Experimental Young’'s modulus of (A) A21-20/CNC10 and (B) A21-40/CNC10
nanocomposites compared with the percolation model (green dash curve) and the Halpin-
Tsai model for randomly-oriented CNCs (black solid line). Based on the supplier’s
information on CNCs, the aspect ratio (A*) was set to 10 for model fitting.

Table S1. Swelling behavior of PPUs as a function of PBLA and CNC content.

Sambple PBLA content CNC content Swelling ratio
P (%) (Wt%) (%)
PEG-HDI PU 0 0 N/A (dissolved)

A21-20 20 0 780
A21-40 40 0 195

A21- 20 10
20/CNC10 1080
A21- 40 10
40/CNC10 380




Table S2. List of the values for the extent of water-responsive stiffness change (AE =
E’ary- E'wet) for various polymer/cellulose nanocomposites (from the literature and from
this study) with 10 wt% of nanocellulose (NC). These values were used to plot Figure 6C.

E’ary | Average E’ary of Average AE of
Nanocellulose Nomenclature
. of AE of | polymer/cellulose | polymer/cellulose
Matrix type content . . - - for Ref.
(Wt%) matrix | matrix nanocomposite nanocomposite nanocomposite
(MPa) | (MPa) (MPa) (MPa)
Natural
rubber (NR) 10 1 0 1.8 0.2 NR/NC10 [4]
Epoxidized
natural (ENR) 10 1.5 0 10 8 ENR/NC10 [4]
Poly(styrene-
co-butadiene) 10 1 0 73 61 SBR/NC10 [5]
(SBR)
Polybutadiene
(PBD) 10 0.5 0 94 72 PBD/NC10 [5]
Polyether-
based
polyurethane 10 16 - 125 78 PU/NC10 [6]
(PU)
Thermoplastic
polyurethane 10 12 0 200 50 TPU/NC10 [7]
(TPU)
Peptide- 0 212 210 A21-20 Our
polyurea work
Peptide- 0 88 73 A21-40 Our
polyurea work
Peptide- Our
polyurea 10 212 210 385 397 A21-20/CNC10 work
Peptide- 10 88 73 360 334 A21-40/CNC10 | OO
polyurea work
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