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Methods

Literature Mining and DOI Compilation - Phase I

To initiate the process, we designed query strings for PubMed, Scopus, and Web of Science, 
targeting articles on FET sensors published between 2010 and 2024. These queries broadly 
scoped keywords like “field effect transistor,” “sensor,” “chemical sensors,” and “gas detectors,” 
focusing on peer-reviewed literature in English (“Phase_I” folder in the Github repository). The 
resulting DOI lists, obtained through these queries, were refined by removing duplicates. 
Subsequently, we investigated each DOI using an LLM-assisted template to systematically 
extract and organize critical data, forming the basis for the subsequent phases of the study.

Semi-Automated LLM-Assisted Data Extraction - Phase II

Building on the curated DOI list from Phase I, we retrieved full-text articles to extract relevant 
information using a question template specifically designed for LLM assistance. This structured 
template enabled ChatGPT to systematically parse each document and extract key parameters 
such as sensor type, detection target, LDL values in parts per million (ppm), probe materials, 
operational conditions, and mediums. Despite the efficiency gains provided by this semi-
automated process, manual validation was integral to maintaining rigor and ensuring high data 
quality.

Manual checks focused on critical areas prone to complexity or ambiguity, such as converting 
LDL values from molar concentrations (e.g., µM) into ppm, requiring molecular weight 
calculations. Additionally, papers that described complex substances like enzymes (e.g., glucose 
oxidase) as probe materials were excluded, as these substances do not align with our focus on 
retrievable chemical or material properties, such as those available through RDKit or the 
Materials Project database. This “semi-LLM process” exemplifies a collaborative synergy 
between AI-driven acceleration and expert oversight. While some may view the necessity of 
manual intervention as a limitation, it ensures the integrity of the dataset, bridging the gap 
between automated efficiency and scientific rigor. This phase significantly expedited data 
extraction compared to fully manual methods while maintaining accuracy for subsequent phases. 
The question prompt template and the final curated table, comprising 1,433 data entries extracted 
from 1,192 publications, are available in the “Phase_II” folder of the GitHub repository.

Data Transformation and Physical/Chemical Properties Integration - Phase III

Building on the curated table of 1,433 data entries from Phase II, we advanced into a systematic 
process of transforming and enriching the dataset. The primary goal of this phase was to prepare 
the raw sensing performance data for downstream analyses by converting experimental records 
into property-enriched numerical datasets. The process encompassed three key stages:
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(a) JSON Conversion and Deduplication

The initial step involved converting the Phase II table into structured JavaScript Object Notation 
(JSON) files, maintaining the original chemical and material entity names as reported. During 
this step, special attention was given to handle duplicate entries across different publications. In 
cases where multiple DOI entries described identical sensing conditions (e.g., same probe 
material, medium, and detection target) but with differing lower detection limits (LDL), we 
retained only the entry representing the most advanced performance—the lowest LDL. This 
process ensured that the dataset reflected the state-of-the-art performance for each sensor 
configuration. The resulting JSON files were stored in the repository folder 
Phase_III/Original_Raw_JSON.

(b) Data Augmentation

Given the relatively limited dataset size screened from the previous step, we applied a carefully 
designed augmentation strategy to increase the dataset’s diversity. This process was guided by 
assumptions about the insensitivity of certain performance metrics (LDL) to minor variations in 
test conditions. Specifically:

Granular LDL Categorization: 

The transformation of continuous LDL values into five discrete performance categories was a 
critical step to simplify and standardize the dataset, enabling consistent comparisons and 
improving compatibility with machine learning algorithms. This categorization process focused 
on reducing the granularity of the data while maintaining meaningful distinctions between 
performance levels. LDL values were analyzed and reassigned to discrete categories based on 
logarithmic scales, reflecting their scientific significance and widespread use in sensing 
performance metrics.

For LDL, the continuous values were categorized into five discrete ranges: Category 5 for values 
≥1 ppm, Category 4 for 0.1–1 ppm, Category 3 for 0.001–0.1 ppm, Category 2 for 0.00001–
0.001 ppm, and Category 1 for values <0.00001 ppm, with each category representing increasing 
sensitivity. This categorization not only preserved the inherent differences in detection 
performance but also facilitated a more manageable and interpretable dataset for analysis. The 
resulting granularity effectively balanced dataset simplicity with the retention of critical 
performance distinctions.

Controlled Variations in Test Conditions:

For gas-phase sensors, slight temperature perturbations within ±10% were applied without 
altering the LDL category.

For liquid-phase sensors that do not involve pH measurements, variations in temperature and pH 
within ±0.5 were introduced.
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For gas sensors, replacing the carrier medium (e.g., nitrogen with argon) was assumed to have 
negligible impact on detection performance.

For pH sensors, small temperature adjustments (e.g., ±10%) were also considered irrelevant to 
LDL categorization.

This augmentation strategy significantly expanded the dataset, generating over 10,000 unique 
entries. To ensure rigorous evaluation of model performance, while the training set from 
augmented data was used for training, the final model assessment was conducted both on test set 
from the augmented data (as shown in Figure 5 red bars), but also the original, non-augmented 
data points within (as shown in Figure 5 blue bars). All data entries were stored in the repository 
folder Phase_III/Original_Raw_JSON. The augmentation approach balanced realism with the 
need for statistical diversity in subsequent analyses. 

(c) Property Retrieval and Dataset Enrichment

The final stage of this phase focused on enriching the JSON files with relevant physical and 
chemical properties for each material and chemical entity.

Inorganic Materials: Properties such as band gaps, formation energies, and crystallographic 
parameters and also MAGPIE fingerprint were retrieved from established materials science 
databases, including Materials Project, AFLOW, JARVIS, COD, and OQMD.

Small Molecules: Molecular properties such as fingerprints (Morgan), topological polar surface 
area, and quantum chemical descriptors were integrated from databases like PubChem.

Polymers: Molecular descriptors were computed using quaternary representations, capturing 
features like topological indices, molecular weight distributions, and other physicochemical 
characteristics relevant to sensing applications. Morgan fingerprints are also included.

Each sensing experiment was represented as a comprehensive JSON object, embedding both the 
original experimental parameters (e.g., operating temperature, pH, detection limit categories) and 
the enriched chemical properties. These finalized datasets were stored in two subfolders: 
Phase_III/Original_Properties_Retrieved_JSON: Enriched versions of the original dataset 
without augmentation. Phase_III/Data_Augmented_Properties_Retrieved_JSON: Property-
enriched versions of the augmented dataset.

This phase culminated in a unique dataset where abstract chemical and physical concepts were 
transformed into numerical descriptors while preserving the original experimental context. The 
rigorous deduplication, augmentation, and enrichment processes ensured that the dataset was 
both comprehensive and representative of cutting-edge FET sensor performance. The 
combination of cheminformatics and materials informatics principles provided a robust 
foundation for machine learning analyses in subsequent phases, bridging the gap between 
experimental insights and predictive modeling.
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Modeling - Phase IV

The modeling component of our work involved learning insights from the original and 
augmented datasets. Specifically, we were interested in classifying each sensing experiment –
represented by a JSON object–into a discrete category ranging from 1 to 5. The classification 
procedure involves the following algorithms: Gradient Boosting Classifier, CatBoost, XGBoost, 
vanilla MLP, vanilla GNN, vanilla SNN, and a hybrid, multimodal spiking network integrated 
SGNN.

The first step was to represent data in a specific way for each algorithm. Each JSON object is a 
set of the following blocks: “detect_target”, “probe_material”, “testing_medium_electrolyte” –
simply referred to as target (T), probe (P), and medium (M), respectively. There’s also an extra 
block containing the test operating temperature, as well as minimum and maximum pH values–
which was called the conditions (C) block.

In the sensing experiments we’ve analyzed, each one of the target, probe, and medium is made of 
one–and possibly more–of the following substance types: small molecule, inorganic solid, and 
polymer. Each substance type has its own specific parameters, which can be divided in global 
physicochemical properties (e.g., molecular weight, volume, complexity, charge) and topological 
geometric structural descriptors (e.g., Morgan fingerprint). 

Given this JSON object description, we shall now discuss how this data structure has been 
represented for each classification algorithm. In total, we used three different representation 
paradigms: sequential, graph-based, and spike-based.

(a) Data Representation
(i) Type I: Sequential

The sequential naive representation was used for the gradient boosting classifier, CatBoost, 
XGBoost, and vanilla MLP. We essentially concatenated all blocks (T, P, M, C) together so that 
each JSON object was converted into a long simple numerical vector. We also performed data 
padding–adding zeros–to standardize and ensure that all samples had the same dimension before 
using them in our models. Corresponding schematic is shown in Figure 3c.

(ii) Type II: Graph-based

On the other hand, the graph-based paradigm consisted of creating a node for each block (T, P, 
M, C). In this context, a node was a set of the corresponding physicochemical and structural 
parameters. Once again, we employed data padding to ensure that all nodes had the same size. 
This representation was used for the vanilla GNN and partially for the hybrid, multimodal 
SGNN. After defining each node, the follow-up question was about the best way we could 
connect them. Even though a fully connected graph, i.e., every node connected to the other, 
would be the most intuitive architecture a priori, initial classification experiments have revealed 
a sub-optimal performance. 
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Additionally, a deeper analysis of the problem allowed us to realize that the conditions node 
mostly affect the medium–since operating temperature and pH values refer to the electrolyte 
medium that has been used in the sensing experiment. Although there are chemical phenomena 
involving the target, probe material, and experimental conditions, we considered them to be 
negligible when compared to the direct link between conditions and medium in our graph 
modeling scheme. Therefore, we adopted an undirected graph representation in which T, P, and 
M are fully connected, while C connects only to M, as illustrated in Figure 3d. It’s also worth 
noting that all edges have the same weight.

(iii) Type III: Spike-based

Finally, the spike-based representation was in the vanilla SNN and as a component of the hybrid 
SGNN model. The main idea was that instead of looking at the JSON object as a set of T, P, M, 
and C blocks, we could perceive it in a different way, i.e., a set of physicochemical, global 
properties and a set of topological, structural, geometric descriptor. 

The advantage of this approach is that both groups are fundamentally different with respect to 
the information they store. While the former is primarily dense (most global properties are not 
zero), the latter is predominantly sparse–Morgan fingerprint’s geometric and connectivity 
description is a binary vector containing mostly zeros and only a handful of ones.

Due to this substantial difference in the way both sets of information are represented, it would be 
convenient to express them accordingly. Therefore, to be able to natively and easily represent the 
connections between all the relevant components, we shall keep a graph-based framework for the 
dense, physicochemical global properties. This graph data structure is used as input for a vanilla 
GNN as shown in the upper pipeline of Figure 4c.

Conversely, sparse, structural properties are better separately represented via spikes. Each sparse 
vector corresponding to the Morgan fingerprint is simply treated as a spike train, with mostly 
zeros and a handful of ones. We then used this spike representation as input for the vanilla SNN 
and part of the SGNN algorithm as shown in the bottom pipeline of Figure 4c. We chose the 
spike latency encoding to leverage the structural properties’ sparsity as much as possible. 
Therefore, as this approach contains one spike per timestep (maximum), it would be a better 
choice than rate encoding, for instance1.

Ultimately, we combined the output of both GNN and SNN via a fusion layer to arrive at the 
final SGNN model prediction—we concatenated both outputs into a vector (size 10) that acts as 
input for the fusion layer, producing a final output as a vector of size 5, i.e., the number of LDL 
categories in this classification task.

(b) Model Overview

As a key innovation factor of this work, we shall discuss some SNN fundamentals. First of all, 
spikes are the natural way to store and process information in neuromorphic computers–non-von 
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Neumann (non-digital) computers inspired in the human brain. There are multiple differences 
between neuromorphic and digital architectures2. On top of using spikes instead of binary data, 
the former also differs from the latter in terms of operation (parallel versus sequential 
processing) and organization (processing and memory in the same place versus separated). An 
additional crucial difference refers to the processing timing: while digital computers are 
synchronous, clock-driven, neuromorphic computers are event-driven2, 3. For such reasons, 
neuromorphic computers could represent a more efficient computing platform–not only energy-
wise, but also in terms of memory overhead4.

The idea of modeling neurons and synapses from the human brain greatly evolved over the past 
century. Starting with the simplest Integrate-and-Fire (IF) neuron in 1907, scientists have 
proposed a number of improvements that led to models with higher biological fidelity (Hodgkin-
Huxley, Morris-Lecar) and computational efficiency (Izhikevich, AdEx IF). In our work, we 
used the Leaky-Integrate-and-Fire (LIF) neuron–one of the most popular models due to its 
unique combination of simplicity and accuracy1. 

The LIF neuron assumes that a spiking neuron behaves like a low-pass filter circuit made of a 
resistor R and a capacitor C. This assumption–which has been biologically validated–can be 
written mathematically as: 

,𝜏dU(t)/dt =  - U(t) +  RI(t)

where  is the neuron’s membrane potential,  is the time constant of the circuit, and  is U(t) 𝜏 = RC I(t)

the current flowing through the circuit at a given time t.  

If the current is constant, the solution to the differential equation above becomes:

,U(t) =  RI +  (U0 - RI)e - t/τ

where  is the membrane potential at . Using the decay rate , we can write the  U0 t = 0 𝛽 = e - 1/τ U(t)

solution via the forward Euler method and discretizing time:

.U[t] = βU[t - 1] +  (1 - β)I[t]

In the context of deep learning, it is useful to write  as , where  is a weight matrix and I[t] WX[t] W

 is a vectorized input completely decoupled from the effect of . This representation’s X[t] 𝛽

advantage lies in the fact that we can now separate  into three terms: decay ( ), input (U[t] 𝛽U[t - 1] 

), and reset ( ). Mathematically,WX[t] S[t - 1]θ

,U[t] = βU[t - 1] +  WX[t] -  S[t - 1]θ

where  if , and  otherwise.S[t] = 1 U[t] > θ S[t] = 0

In practical terms, this means that the membrane potential increases whenever an input spike 
arrives, and it decays over time according to the  factor. If the potential increases enough to 𝛽
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reach the potential threshold , the neuron fires an output spike, and the membrane potential 𝜃

resets to zero. Figure S2 represents this behavior for a set of input and output spikes over time.

In our model, the decay rate  and the hidden size–i.e., number of neurons in the hidden layer–𝛽

are customizable. Since both hyperparameters are crucial for the SNN performance, we fine tune 
them using BALLET: a Bayesian Optimization framework that adaptively filters the search 
space for a high confidence region of interest until it finds the hyperparameter values associated 
with the highest accuracy. 

Even though neuromorphic has many advantages over von Neumann architecture, spiking 
neurons are inherently non-differentiable due to their event-driven behavior. For this reason, 
gradient-based optimization methods–e.g., backpropagation–cannot be used directly to train 
SNNs. Among the many approaches to this problem, we shall focus on the surrogate gradient 
descent (SGD) technique2, 4

As previously discussed, the spiking neuron fires according to the step function  that includes a 𝜎
comparison between the membrane potential  and the threshold , which does not affect the U[t] 𝜃
forward pass. Conversely, in the backward pass, we cannot directly differentiate the step 
function. To address this issue, we can approximate the step function derivative  in a couple of 𝜎'
different ways, including the sigmoid function  and the Gaussian 𝜎'(x) = σ(x)(1 - σ(x))

approximation5 . This approach retains the temporal dynamics of spiking 𝜎'(x) =  exp( - x2/2)
neurons while allowing gradient-based learning.

In our problem, the training mechanism involved a cross-entropy loss function to compare 
targets to our model’s outputs, while the backward pass applied a sigmoid SGD, enabling the 
SNN training. On that note, we chose cross entropy over mean squared error (MSE) due to a 
higher alignment with probabilistic outputs, larger gradients for wrong predictions6, and an 
observed faster convergence and overall higher classification accuracy in preliminary numerical 
experiments.

(c) Training Environment

Once we have defined the data representation for each algorithm, we moved on to the training 
environment characteristics. Even though these algorithms are significantly different from each 
other, we can establish some basic, pre-defined parameters that shall be shared by all of them. 
For instance, for all algorithms, we used an 80:20 training-test dataset ratio. As mentioned 
previously, to ensure a fair setting and to verify that the augmented data is consistent with the 
original dataset, we only used 80% of the augmented samples to train the model. We then 
evaluated the model in the remaining 20% of the augmented dataset–represented as “Test Set 
(Augmented)”–and in the original dataset within, which is referred to as “Test set (Original)”. 
This training and evaluation procedure was the same for all algorithms in this work. 

Additionally, we have applied the BALLET optimization framework for determining the 
optimum set of hyperparameters for each algorithm. Specific values for each algorithm can be 
found in the repository folder Phase_IV. We carried out most of the ML model training 
experiments locally in a computer with an Apple M2 chip, 16 GB RAM, and 256 GB Macintosh 
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HD. For certain computationally intensive tasks, the scripts were separately run on professional 
workstation and the supercomputer clusters as mentioned in the acknowledgement section.

(d) Relevant Classification Metrics

There are many ways to measure the classification performance of our models. Some of the most 
common metrics include accuracy, F1 score, precision, and recall. Even though classification 
metrics related to false positives and negatives may still be relevant in multi-category problems, 
in our specific case, the model was supposed to correctly identify the exact category (1-5) of a 
given sensing experiment. Therefore, accuracy was deemed to be the most important metric in 
our analysis, i.e., the number of correct classification instances divided by the total number of 
samples. To determine whether or not a sample was correctly classified, we simply took each 
label from the test dataset and compared it to the model’s prediction for that same sample. 

Best Model Explanation - Phase V

After running all these models, we selected the one with the highest accuracy to obtain additional 
insights on our dataset. As illustrated in the Results section, the hybrid, multimodal SGNN 
outperformed the other classification algorithms by a significant margin. Therefore, we used it to 
address two main questions: feature selection and perfluorooctane sulfonic acid (PFOS) 
detection probe material screening. The corresponding code for this phase can be found in the 
repository folder Phase_V. 

The first one is about determining the most relevant features for obtaining a very low detection 
limit (high sensitivity) sensor. As we know, each block (T, M, P, C) has multiple 
physicochemical features, and each one of them can affect the final LDL classification. On that 
note, we ran integrated gradients and SHAP values experiments and obtained a list of the most 
recurrent features associated with the actual LDL determination. This is an important insight that 
can be used for guiding future research on FET sensor design–once we know which features are, 
on average, strongly correlated with the LDL, we can choose materials more effectively.

It is worth mentioning that SHAP values and integrated gradients are highly effective for feature 
selection in tabular data, which is not the representation we have in the GNN, SNN, and SGNN 
algorithms. In this case, we considered only the physicochemical properties within each node as 
the features to be selected. To further validate the feature selection results, we used some 
numerical techniques derived from random matrix theory (RMT) analysis7. After globally 
normalizing the features–ensuring zero-mean and unit-standard deviation–we used the 
Marcenko-Pastur law8 to obtain the bulk distribution of eigenvalues of the corresponding 
covariance matrix. We then applied a sparse principal component analysis (PCA) considering the 
eigenvalues outside of the bulk spectrum, as they were the most relevant feature candidates9. The 
RMT analysis led us to the same set of most relevant global features for LDL multi-category 
classification.   
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On top of that, we also employed the SGNN model for screening the best possible probe 
materials for detecting PFOS. Given fixed conditions (T = 25 °C, pH max = pH min = 7) 
commonly found in our dataset, we consider all probe materials in our dataset as potential 
candidates for high sensitivity and selectivity toward PFOS. We then ran all possible 
combinations of those probe materials, PFOS as target, and fixed conditions using the best 
performing SGNN to determine which probe materials led to the lowest LDL values (high 
sensitivity). 

Validation on Real Application - Phase VI

To simulate the binding interactions of various probe-target combinations under periodic 
boundary conditions, we conducted ab initio calculations using parameters optimized for 
precision and computational efficiency. The plane-wave energy cutoff was set to 450 eV, and 
spin-polarized DFT with the Perdew-Burke-Ernzerhof (PBE) functional was employed to 
describe exchange-correlation interactions. The Brillouin zone integration utilized a Gamma-
centered 2 × 2 × 2 k-point grid and van der Waals corrections were included using the DFT-D3 
method to capture dispersion effects. Ionic relaxations were performed with a convergence 
criterion of 0.02 eV/Å for the forces, and the electronic structure iterations were set to converge 
to an energy difference of 10e-4 eV.

For the modeling of small molecules such as β-CD, FcCOOH, and o-PD, the structures were 
placed in the center of a cubic vacuum box with appropriate dimensions to eliminate spurious 
interactions. Graphene was modeled as a supercell containing 128 carbon atoms with a vacuum 
thickness of 25 Å, while SWNT comprised 120 carbon atoms with chirality indices N=M=6, a 
repeat unit of 5, and the same vacuum thickness of 25 Å. For ZnO and Al₂O₃, the simulations 
utilized the most common (001) facet, modeled as supercells containing 192 and 120 atoms, 
respectively, with unsaturated metal (Zn or Al) surfaces exposed. A uniform vacuum thickness 
of 25 Å was applied to all periodic models to avoid artificial interactions between periodic 
images.

Binding energies (ΔE) were calculated using the formula:

ΔE = |Eprobe&target - (Etarget + Eprobe)|

where is the total energy of the coupled system, and are the energies of the Eprobe&target Eprobe Etarget

isolated probe and target, respectively. This approach enabled the quantification of binding 
interactions and selectivity for various probe-target pairs under realistic simulation conditions. 
The larger the value is, the more energy favorable the binding would be.

For quantum chemistry simulations, binding interactions between probes and targets were 
evaluated under three different environmental scenarios: vacuum, implicit solvent, and explicit 
solvent. Initially, the structures of all configurations, including the probe, target, and coupled 
systems, were optimized using a hybrid density functional theory approach with the B3LYP 
functional and the 6-31G(d) basis set. This step included vibrational frequency calculations to 
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confirm the stability of the optimized geometries and ensure that all structures corresponded to 
true minima on the potential energy surface.

Following structural optimization, single-point energy calculations were performed at a notably 
higher level of theory using the B3LYP functional and the def2-TZVP basis set. Tight SCF 
convergence criteria: extended quadratic convergence was employed to achieve robust and 
accurate electronic energy values. This higher-level calculation ensures better precision in 
describing the electronic interactions within the system, which is critical for evaluating binding 
energies.

For simulations incorporating implicit solvent effects, the solvent environment was modeled 
using the Self-Consistent Reaction Field (SCRF) method with water as the dielectric medium. 
This approach captures the influence of solvation on binding interactions without explicitly 
adding water molecules. In the explicit solvent scenario, a cluster of 12 water molecules was 
introduced around the system to mimic the solvation shell. Pre-optimization of this cluster was 
performed at a lower level of theory using the long-range corrected hybrid functional wb97xd/3-
21G with relaxed convergence criteria to obtain an initial configuration. Subsequently, the 
system underwent re-optimization at the b3lyp/6-31G(d) level with tighter convergence settings 
to refine the geometry further. Binding energies (ΔE) in all scenarios were computed using the 
single-point energy differences.
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Figure S1 Distribution of LDL and also threshold of the five classes as ML modeling output.
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Log (LDL[ppm]) Category Number of original samples

log(LDL) <- 6 1 (Very High Sensitivity) 222

- 6 ≤ log(LDL) <- 3 2 (High Sensitivity) 133

- 3 ≤ log(LDL) <- 1 3 (Medium Sensitivity) 202

- 1 ≤ log(LDL) < 1 4 (Low Sensitivity) 357

log(LDL) > 1 5 (Very Low Sensitivity) 278

Table S1 Category description in terms of the LDL (in ppm) and the total amount of original 
data samples per category.
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Figure S2 Simulation of a LIF neuron dynamics with membrane potential, input and output 
spikes over time.
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PFAS Name Probe 1 Probe 2 Probe 3 Probe 4 Probe 5

Perfluorooctanoic acid graphene zinc oxide carbon 
nanotube

aluminum 
oxide gold

Perfluorohexanesulfonamide graphene aluminum 
oxide zinc oxide gold carbon nanotube

Perfluoroundecanoic acid graphene aluminum 
oxide zinc oxide tin dioxide phenol

Perfluoropropanesulfonic 
acid graphene zinc oxide aluminum 

oxide
carbon 

nanotube tin dioxide

Perfluorooctadecanoic acid graphene zinc oxide hafnium 
oxide phenol ethylene oxide

Perfluorooctanesulfonic acid graphene zinc oxide aluminum 
oxide

carbon 
nanotube tin dioxide

Perfluorohexanesulfonic 
acid graphene aluminum 

oxide zinc oxide carbon 
nanotube silicon dioxide

Table S2 Probe substances predicted by the SGNN model for different PFAS target analytes. In 
this case, we performed the probe material screening using the fully-converged SGNN model 
after training and testing with the augmented data.

PFAS Name Probe 1 Probe 2 Probe 3 Probe 4 Probe 5

Perfluorooctanoic acid graphene silicon 
dioxide gold zinc oxide tin dioxide

Perfluorohexanesulfonamide graphene zinc oxide silicon
dioxide

carbon 
nanotube

aluminum 
oxide

Perfluoroundecanoic acid graphene gold phenol silicon 
dioxide

carbon
nanotube

Perfluoropropanesulfonic 
acid graphene zinc oxide carbon

nanotube
aluminum

oxide tin dioxide

Perfluorooctadecanoic acid graphene gold tin dioxide titanium
dioxide ethylene oxide

Perfluorooctanesulfonic acid graphene zinc oxide aluminum 
oxide

indium 
oxide tin dioxide

Perfluorohexanesulfonic 
acid graphene zinc oxide silicon 

dioxide
carbon 

nanotube
aluminum

oxide

Table S3 Probe substances predicted by the SGNN model for different PFAS target analytes. In 
this case, we performed the probe material screening using the fully-converged SGNN model 
after training and testing with the original data, only.

Note: The consistency of the probe predictions across all PFAS substances—comparing Table S2 and 
S3—suggests that our data augmentation approach not only increases the dataset size, but also introduces 
realistic variations that mirror intrinsic uncertainties in real-world sensor measurements. This analysis 
indicates that the SGNN’s probe screening prediction would still be effective if we had used only the 
original dataset.
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Figure S3 Histogram summary plots indicating the values of ΔΔEPFOS-SDS in (a) vacuum, (b) 
implicit solvent field of water, and (c) explicit solvent water cluster.
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Figure S4 (a) HOMO-LUMO gap values calculated for different isolated molecule species in 
vacuum. (b) HOMO-LUMO gap values calculated for different scenarios of graphene before and 
after binding with PFOS and SDS. (c) similar to (b), gap values for FcCOOH’s binding behavior.

Note: 

In our study, the isolated standard graphene moiety exhibits a HOMO-LUMO gap of 0.2130 eV, 
highlighting its highly conductive and metal-like nature. In contrast, FcCOOH has a significantly 
larger gap of 4.8664 eV. Upon binding with PFOS or SDS, FcCOOH shows comparatively 
larger changes in the HOMO-LUMO gap, whereas graphene demonstrates only slight variations. 
This observation aligns with our conclusion in the main text that FcCOOH undergoes stronger 
electronic coupling and orbital interactions with PFOS, as evidenced by the drastically changed 
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gap values. Conversely, graphene primarily interacts through weak π-π stacking or physisorption, 
leading to minimal alterations in the HOMO-LUMO gap. Despite it is still secondary compared 
to FcCOOH, graphene’s meaningful binding interactions still justify itself as a potential probe 
material. Combining these probes, such as grafting FcCOOH on a graphene channel, could 
exploit their unique strengths for enhanced sensing performance in practical applications.

Further, under both vacuum and explicit solvation (12 water molecules), the HOMO-LUMO gap 
reduces upon binding either PFOS or SDS to graphene or FcCOOH. However, under implicit 
solvation, a slight increase in the HOMO-LUMO gap is observed for graphene. This discrepancy 
arises because implicit solvent models approximate the solvent as a uniform dielectric medium, 
which can fail to account for specific solute-solvent interactions or solvent-induced polarization 
effects10. These limitations can result in an inaccurate depiction of how solvation affects the 
electronic structure, particularly for systems like graphene, where subtle electronic 
rearrangements play a key role. Hence, while the inclusion of explicit solvation with 12 water 
molecules is computationally more expensive, it provides a higher accuracy and a more realistic 
representation of the interaction environment, making it critical for reliably interpreting binding 
energetics and electronic behavior. 
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Figure S5 (a) Snapshots of the different investigated probe and probe-PFOS systems with 
explicit water molecules. (b) corresponding ΔG_rel statistical values. 

To test our hypothesis that graphene and FcCOOH may synergistically enhance PFOS binding, we 
performed ab initio molecular dynamics (AIMD) simulations on pre‐optimized configurations of 
three probe systems: FcCOOH, graphene, and graphene–FcCOOH. For each probe system, both 
the isolated probe and its corresponding probe–PFOS complex were embedded in a simulation cell 
containing 168 explicit water molecules (with the water density maintained based on the cell 
volume) and a 15 Å vacuum layer along the z direction to minimize spurious interactions. The 
AIMD simulations were conducted using the same electronic and ionic settings as our previous 
static calculations, with the only modification being that the systems dynamically evolved in the 
NVT ensemble. An initial pre-optimization of 1000 AIMD steps (1 ps) was performed, followed 
by a production run of an additional 1000 AIMD steps for production. A sliding-window procedure 
was then employed to identify a representative equilibrium window of 100 consecutive frames, 
defined by an average absolute energy change between successive frames below a threshold of 
(total number of atoms × 0.5 meV). In this study, we report the free energy (G) because G—
incorporating the electronic entropy via Fermi–Dirac smearing—offers a more thermodynamically 
realistic description under constant temperature and volume conditions. The relative binding free 
energy was defined as 

ΔG_rel = G(probe–PFOS) – G(probe). 

Because the additional energy term corresponding to an isolated PFOS molecule is invariant across 
the different probe systems and is prohibitively expensive to obtain via AIMD, it was omitted from 
the relative analysis. Statistical analysis of the 100-frame equilibrium window yielded the mean, 
variance, and 95% confidence interval for ΔG_rel for each system. This approach enables a 
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quantitative ranking of the PFOS binding propensities of the different probes while significantly 
reducing computational cost compared to a full thermodynamic cycle evaluation. 

As shown in Figure S5, our hypothesis is well-validated by the results in these realistic simulation 
environments. FcCOOH alone, as expected, could show a relatively 3.37 eV advantage compared 
to pure graphene. Impressively, when FcCOOH is mounted on the graphene sheet, a 6.64 eV free 
energy advantage is observed. This phenomenon has well qualitatively supported our hypothesis 
that in a practical 2D FET graphene sensor where graphene is used as channel material, grafting 
FcCOOH might increase the performance. 
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