
Supplementary Information
Biomimetic Fusion: Platyper's Dual Vision for Predicting Protein-Surface

Interactions
Chuhang Hong

Xiaopei Wu
Jian Huang

Honglian Dai
Supplementary Notes
Supplementary Note 1. Gromacs implements SMD simulation of surface system

Molecular dynamics is a method of modeling the motion of molecular systems using
Newtonian classical mechanics. The dynamic simulation of the system under study enables the
understanding of the motion and biological functions of biological macromolecules, protein-small
molecule interaction mechanisms, and self-assembly processes of nanomaterial molecules at the
molecular level. A large number of molecules with identical properties and structures can be
synthesized under certain macroscopic conditions, in various states of motion and independent of
each other. This collection of independent systems with identical properties and structures, in
various states of motion, is called a system.
1.1. Steered molecular dynamics

 In this paper, the complexes to be used before SMD calculations include the NVT system
and the NPT system. The NVT system refers to the molar number of molecules (N), volume (V),
and temperature (T) remaining constant, with energy exchange with the outside world. As the
system has an energy exchange with the outside world, certain methods are needed to maintain a
constant temperature. On the other hand, the NPT system refers to the number of molecules (N),
pressure (P), and temperature (T) remaining constant. In addition to maintaining constant
temperature, the system also requires controlling constant pressure.

In this paper, we employ the Umbrella sampling technique for performing SMD simulations
using Pull Code. It is worth mentioning that Pull Code encompasses three types: AFM pulling,
Umbrella sampling, and constraint. We add a resonance potential to the center of mass of a group
of atoms. This potential helps in maintaining the position of the pull group relative to the reference
group. The setting of Pull_geometry is crucial, as it encompasses four modes: position, distance,
direction, and cylinder. In this experiment, the distance mode is employed, whereby the pull is
always directed along the vector connecting the reference group to the pull group. Consequently,
if the reference group moves, the pull group moves along with it. In cases where the reference
group is not defined, the pull group is positioned in absolute coordinates and the reference group
is assigned as [0 0 0]. By utilizing this mode, the spring point will exclusively move in the
direction of the line linking the reference group to the pull group.

1.2. Umbrella sampling
For biological macromolecules, some large conformational changes are difficult or

impossible to reach within the existing range of simulation scales. In such cases, one often
employs the means of adding external biasing forces to the system to accelerate the process. This
is where umbrella sampling, an accelerated sampling method, comes into play. The process of
stretching dynamics (SMD) involves applying a simple harmonic force, similar to a spring, to a
specific part of the macromolecule. This force pulls the macromolecule at a constant velocity. As

Electronic Supplementary Material (ESI) for Materials Horizons.
This journal is © The Royal Society of Chemistry 2024

a result, the region being pulled is displaced, and a number of conformations are selected during
this period. Independent simulations are then performed using these conformations as the initial
frames. Finally, the simulations are integrated using weighted histograms to derive the potential of
mean force (PMF) for the energy change during the traction process. The PMF is a valuable tool
for calculating the effective interaction between two complex molecules in a liquid medium. The
standard approach to calculating the PMF along a reaction coordinate is as follows: simulations

are conducted individually along the reaction coordinate and influenced by the umbrella 

potential described in Eq. l, where the system's position is constrained by the force ()iw  i

constant .iK

(1) 2()

2
i

i i
Kw    

The PMF can be obtained by applying Equation 2 to the unbiased probability distribution of

the system, with the condition that the PMF is zero at an arbitrary point .0

 (2)  B
0

()() ln PW k T
P



 
    

 

The Weighted Histogram Analysis Method (WHAM) in the GROMACS simulation package
was used to derive the unbiased probability distribution. To calculate the statistical error, we
employed the Bayesian bootstrap method, utilizing the complete histograms provided by the
g_wham program in GROMACS. This analysis demonstrates the accurate estimation of the
standard deviation function of the Potential of Mean Force (PMF) using the Bayesian bootstrap
method in umbrella sampling.

Supplementary Note 2. Attention Mechanisms
Attention Mechanisms, also known as the ability to focus attention on important areas of an

image and discard irrelevant ones, play a crucial role in computer vision. Inspired by the human
visual cortex, Attention Mechanisms were introduced to computer vision by researchers to
enhance performance in analyzing complex scene information. There are four major categories of
attention mechanisms: Channel Attention, Spatial Attention, Temporal Attention, and Branch
Attention.

2.2 Self-Attention
Self-attention mechanism is a kind of Attention mechanism. Unlike the general attention

mechanism, the self-attention mechanism is not an Attention mechanism between an input feature
and an output feature, but an Attention mechanism that occurs between elements within an input
feature or between elements within an output feature.

Self-attention models often use the QKV (Query-Key-Value) model, for each vector a,
multiply three coefficients , respectively, to get three values of Q,K,V :

 (3)

𝑄 = 𝑊𝑞 ⋅ 1
𝐾 = 𝑊𝑘 ⋅ 1
𝑉 = 𝑊𝑣 ⋅ 1

The obtained Q,K,V denote query, key and value respectively.The weight parameter , , 𝑊𝑞 𝑊𝑘

 are iterated during the network update, as shown in Supplementary Figure 3. This process can 𝑊𝑣

be summarized in the formula:

 (4)
When the mean of each component is determined, the variance of the dot product of the

individual components of vectors Q and K, denoted as dk, can be calculated. Dividing by dk

allows the variance to be scaled appropriately, ensuring that the components generating the largest
variance are not excessively magnified. Consequently, the larger the variance, the more skewed is
the component that produces the largest.

Despite considering all input vectors, the self-attention mechanism fails to incorporate
positional information, hindering our ability to approach the problem from an image perspective.
2.2 Convolutional Block Attention Module (CBAM)

CBAM, which combines channel and spatial attention, can be considered as a mixture of
these two types of attention.The CBAM module is a lightweight module that can be embedded
into any backbone network to improve performance. It is able to sequentially generate attention
feature map information in both channel and spatial dimensions, given a feature map. The feature
map information is then multiplied with the previous original input feature map for adaptive
feature correction to produce the final feature map. CBAM produces 1D channel attention feature

maps and 2D spatial attention feature maps for the feature maps 𝑀𝑐 ∈ 𝑅𝐶 × 1 × 1 𝑀𝑠 ∈ 𝑅1 × 𝐻 × 𝑊

 generated by the network backbone, respectively. This process can be described as 𝐹 ∈ 𝑅𝐶 × 𝐻 × 𝑊

Eq.3, which denotes the element-level multiplication, with the intermediate dimensional
transformation and matching using the broadcast mechanism.

 (5) 
()c

s

F M F F
F M F F








 

The channel attention mechanism is based on the relationship between the features. Each
channel of the feature map is treated as a feature detector, allowing the channel features to
concentrate on identifying the useful information in the image. To enhance the efficiency of
computing the channel attention features, the spatial dimension of the feature map is compressed

using two methods: average pooling and maximum pooling . The corresponding 𝐹 𝑐
𝑎𝑣𝑔 𝐹 𝑐

𝑚𝑎𝑥

average pooling feature and maximum pooling feature are denoted as and , respectively.
Subsequently, the feature is inputted into a shared multilayer perceptron (MLP) network to

generate the final channel attention feature map . To reduce the computational 𝑀𝑐 ∈ 𝑅𝐶 × 1 × 1

parameters, a dimensionality reduction coefficient, r (), is employed in the MLP. 𝑀𝑐 ∈ 𝑅𝐶/𝑟 × 1 × 1

Equation 4 summarizes the channel attention computation formula.

 (6)
      1 0 avg 1 0 max

() ((()) (()))c

c c

M F MLP AvgPool F MLP MaxPool F

W W F W W F





 

 

The spatial attention mechanism, unlike channel attention, directs attention towards the
"where" of the effective information on the feature map. To compute spatial attention, the feature
map undergoes average pooling and maximum pooling in the channel dimension. The resulting
feature maps are then concatenated, and a convolution operation is performed on the concatenated

feature map to generate the final spatial attention feature map . Similar to the 𝑀𝑠(𝐹) ∈ 𝑅𝐻,𝑊

channel attention mechanism, two pooling methods are employed in the channel dimension to

produce 2D feature maps, . The spatial attention 𝐹 𝑠
𝑎𝑣𝑔 ∈ 𝑅1 × 𝐻 × 𝑊 𝑎𝑛𝑑 𝐹 𝑠

𝑎𝑣𝑔 ∈ 𝑅1 × 𝐻 × 𝑊

formulation can be summarized in Equation 5.

 (7)
 

  
7 7

7 7
avg max

() ([();max ()])

;

s

s s

M F f AvgPool F Pool F

f F F













Supplementary Note 3. Platyper model’s training parameters
Understanding tuning techniques and common optimization strategies is crucial to training

efficient models because deep learning models have many hyperparameters that need to be
experimented with and tuned to optimize their performance. These hyperparameters, including
learning rate, batch size, and number of layers, among others, play a crucial role in determining
the effectiveness of the model. Therefore, researchers and practitioners must carefully select and
tune these hyperparameters to achieve optimal results. The training process was conducted using
an NVIDIA RTX 4080 graphics card and a Dell Precision 7920 workstation with dual Intel Xeon
Silver 4210R CPUs.
3.1 Gradient descent

The weights in the model are updated through stochastic gradient descent, represented as 
Equation 6, where is the learning rate. The objective function , which is minimized or  𝐽(𝜃)

maximized, is referred to as the loss function when minimizing, shown in Equation 7 and
Equation 8.

 (8)
: ()j j

j

J   


 

 (9)
 2

1

1() ()
2

m

i

J h x y


 

 (10)0 1 1 2 2() n nh x x x x       

During training, multiple iterations on the entire dataset will be performed, known as epochs.

The gradient is obtained through backpropagation.

∂
∂𝜃𝑗

𝐽(𝜃)

3.2 Batch Size
Batch Size is an important concept in deep learning, referring to the number of samples

inputted simultaneously during each model training. In the training process of neural networks,
data is usually divided into several batches, with each batch containing a specific number of
samples. Batches denote a collection of samples simultaneously inputted into the neural network,
enabling the utilization of the parallel computing capabilities of hardware acceleration, such as
GPUs, to enhance training efficiency. Compared to the complete batch training with all samples
inputted at once, batch processing is more effective in utilizing computational resources. A larger
Batch Size typically enhances training speed as it allows for the simultaneous processing of
multiple samples in each training step, thereby better utilizing hardware acceleration, which is
particularly crucial for large-scale data and complex models. Conversely, a smaller Batch Size
may contribute to better generalization to unseen data as it introduces some noise similar to the
regularization effect, thus preventing overfitting. In deep learning, parameter updates are typically
achieved through the gradient descent algorithm, and Batch Size influences the calculation of
gradients in each update step. A larger Batch Size usually provides more stable gradients, although
at times, it may lead to convergence to local minima.
3.3 Number of epochs

The number of epochs has a significant impact on the learning process of a model as it
controls the number of times the model learns about the entire dataset. This repeated exposure to
the dataset allows the model to gradually learn patterns and features, thus improving its
performance over time. The assessment of performance on both the training and validation sets is
critical in determining whether the model is overfitting. If the model performs well on the training
set but its performance deteriorates on the validation set, it is likely overfitting. Proper control of
epochs is necessary to prevent overfitting. Moreover, the number of epochs is also closely linked
to the convergence of the model. As epochs increase during training, there comes a point where
the model's performance stabilizes and stops showing significant improvement. Consequently,
further increasing the number of epochs may not yield substantial performance gains.Batch Size
and number of training steps for Epochs N can be expressed by the following equation:

 (11)
N =

S
B

× E

,where S is the number of samples in the training set, B is Batch Size, and E is Epochs.
3.4 Learning Rate

The learning rate is an essential hyperparameter in machine learning and deep learning, as it
controls the magnitude of updates to the model parameters during each iteration. It determines the
step size while moving along the gradient direction in gradient descent, thereby influencing the
tuning of model parameters. Consequently, the choice of learning rate directly impacts the
convergence speed of the model. Using a large learning rate might lead to oversized parameter
updates, causing the model to oscillate and struggle to converge. Conversely, a smaller learning
rate may result in slow model convergence. Thus, an appropriate learning rate can expedite
convergence and enhance training efficiency. The choice of learning rate also influences the
generalization performance of the model, with a smaller learning rate contributing to better
generalization by providing greater stability during training and reducing the risk of overfitting.
Maintaining the stability of the model is crucial, as an excessively large learning rate can lead to
divergence during training while an overly small learning rate might trap the model in local
minima. Consequently, practitioners commonly experiment with various learning rate values to
identify the optimal one for a given task and model structure. Additionally, learning rate decay,
such as exponential decay or cosine annealing, is often employed to further fine-tune the
parameters as training progresses.
3.5 Activation Function

The activation function in a neural network is a crucial nonlinear operation within a neuron
or layer, receiving inputs and producing outputs. This function introduces nonlinear properties that
enable the neural network to learn and represent complex patterns and relationships. By
nonlinearly mapping the inputs, the activation function allows the network to automatically learn
and characterize features in the data, enhancing its ability to handle different types of features.
Moreover, it introduces the necessary nonlinear transformations, enabling the network to learn and
represent nonlinear relationships, which are essential for modeling real-world data that contains
complex and non-linear patterns. Consequently, the choice of activation function significantly
influences the expressive power of the neural network, making it easier to train and helping to
overcome issues such as gradient vanishing or explosion. Furthermore, the output range of an
activation function can be tailored to meet specific task requirements, for instance, the sigmoid
function

𝜎(𝑥) =

1

1 + 𝑒−𝑥

(12)
having an output range between 0 and 1, is suitable for binary classification problems, while the
tanh function

𝑡𝑎𝑛ℎ⁡(𝑥) =

𝑒𝑥−𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

(13)
, with an output range of -1 to 1, serves a similar purpose but offers a different range. The
Rectified Linear Unit (ReLU) function

 (14)𝑅𝑒𝐿𝑈⁡(𝑥) = 𝑚𝑎𝑥(0,𝑥)

, widely employed in hidden layers, introduces nonlinearity. It is essential for increasing the
model's expressive power. This function effectively addresses the issue of vanishing gradients
associated with linear activation functions, contributing to improved accuracy and convergence in
deep learning models. Furthermore, the Leaky ReLU function
Leaky (15)𝑅𝑒𝐿𝑈⁡(𝑥) = 𝑚𝑎𝑥(𝛼𝑥,𝑥)

, which introduces a small positive number (), resolves the problem of negative values that can 𝛼

occur with the standard ReLU function. This enhancement enables the Leaky ReLU to maintain
gradient flow and address the "dying ReLU" problem, a limitation of the standard ReLU function.
In contrast, the Softmax function

𝑆𝑜𝑓𝑡𝑚𝑎𝑥⁡(𝑥)𝑖 =
𝑒

𝑥𝑖

∑𝑗 𝑒
𝑥𝑗

(16)
, commonly utilized in the output layer of a multi-classification problem, is instrumental in
transforming the output into a probability distribution. By producing normalized class
probabilities, Softmax facilitates the interpretation of the model's predictions, supporting effective
decision-making in practical applications.

Supplementary Note 4. Platyper model’s evaluation protocols
Seven metrics are used to indicate the difference between the model predictions and the

simulated values of the test dataset as a means of assessing model performance . ˆi iy y

represents the discrepancy between the true value and the test value on the test set.

4.1 R-squared (R²)
R-squared (R²) is a metric used to assess the goodness-of-fit of a regression model. It takes

values between 0 and 1 and indicates the proportion of the variance of the dependent variable
(target variable) that is explained by the model. The closer R² is to 1, the better the model explains
the data. The model's ability to explain the data is weaker when R² is closer to 0. In contrast, a
higher R² value suggests a stronger explanation of the data by the model.

 (17)

 
 

2

2
21

ˆi i
i

i i
i

y y

y y

 
 

 
R

4.2 Mean Squared Error(MSE)
Mean Squared Error(MSE) measures the difference between the predicted value and the true

value by taking the square of the mean error. A smaller MSE indicates a better model accuracy, as
it signifies that the predicted value is closer to the true value.

 (18)
 

1
MSE ˆ1 m

i i
i
y y

m 
  

4.3 Root Mean Squared Error(RMSE)
Root Mean Squared Error(RMSE) is the square root of MSE, representing the mean

prediction error. It shares the same units as the original data and, like MSE, lower values indicate
smaller prediction errors of the model.

 (19)
 2

1

1R ˆMSE
m

i i
i
y y

m 
  

4.4 MAE (Mean Absolute Error)
MAE (Mean Absolute Error) calculates the average of the absolute differences between

predicted and true values. Unlike MSE, which squares the error, MAE is more sensitive to large
errors because it does not incorporate the squaring step.

 (20)
µ 

1

1MAE
m

i i
i
y y

m 
  

4.5 The Median Absolute Error (MedianAE)
The Median Absolute Error (MedianAE) is a measure of the absolute difference between

predicted and true values, taking the median value. Unlike MAE, MedianAE is resistant to outliers
and prevents outliers from influencing the measure.

 (21)
µ µ 1 1 , , i iMedianAE median y y y y   

4.6 The mean absolute percentage error (MAPE)

The mean absolute percentage error (MAPE) is a metric that is sensitive to relative error. It
remains unaffected by global scaling of the target variable and is appropriate for situations with a
wide difference in the target variable's magnitude.

 (22)

µ 
 1

1MAPE
max ,

m i i

i i

y y

m y


 

ò

4.7 Explained Variance assesses
Explained Variance assesses the model's ability to explain the variance of the target variable

and quantifies the improvement in the model's predictive power compared to the simple mean.

 (23)

{ }Explained_Variance 1
{ }

ˆVar y y
Var y


 

Supplementary Note 5. Gradient-based Class Activation Mapping
5.1 Class Activation Mapping

Class Activation Mapping (CAM) is a technique that generates a map of the same size as the
original image. The pixels on this map have values ranging from 0 to 1, and it is commonly
represented as a grayscale map from 0 to 255. CAM can be visualized using a heat map overlayed
on the original image, as shown in Fig5 where the red highlighted area serves as the main
judgment basis. The process of acquiring CAM involves several steps. Firstly, the feature layer to
be visualized is extracted. Then, the weight of each channel of this tensor is obtained. Next, the
tensor is linearly fused, with the weighted and summed channel dimension resulting in a smaller-
sized map. Lastly, the map is normalized and resized to the original size through interpolation.
5.2 Gradient-based Class Activation Mapping

Gradient-based Class Activation Mapping (Grad-CAM) is a versatile method used for
obtaining Class Activation Maps (CAMs) in CNN-based networks. Initially, CAM is obtained by
modifying the global average pooling (GAP) form of the network, utilizing the weights of the
GAP layer and the global connection as the feature fusion weights37. This linear fusion of feature
maps allows for the creation of CAM. However, this method is limited to networks that solely
consist of CNNs and are used for classification purposes. On the other hand, gradient-based CAM
allows for greater flexibility. The core concept behind gradient-based CAM is to express the
fusion weights of target feature maps as gradients. Additionally, in order to focus on features that
positively impact the classification, ReLU is incorporated to remove negative values in the
heatmap. Notably, Grad-CAM can be utilized in various problems beyond classification, as long
as the activation function can be derived. The feature fusion weights are calculated according to
Equation 16.

 (24)

1 c
c
k ki j ij

y
Z A




 

The variable represents the score of the target category, which is the weight in the
cy

network that has not been passed through the softmax function. refers to the target feature
k
ijA

map that needs to be visualized. performs global average pooling. calculates the

1
i jZ


c

k
ij

y
A




gradient through backpropagation. The grad-CAM method described here is applicable to network
structures without GAP connections, and it can extract the heatmap of any layer's feature map.

Supplementary Figures

Supplementary Figure 1. Flow of the Platypus Dual Perception Neural Network

、

Supplementary Figure 2. Original images and randomly rotated images
Generate a series of new images by randomly rotating and scaling the original trajectory images
using matlab.

Supplementary Figure 3. Self-attention mechanism calculation method flow
Q,K,V denote query, key and value respectively.The correlation between every two input vectors
is computed using the obtained Q and K, that is, the matrix of ATTENTION is computed A. Each
value in the matrix A records the magnitude of the Attention of the corresponding two input
vectors. A' is obtained by performing softmax operation or relu operation on the matrix A'. The
obtained A' and V are used to compute the output vector b of the self-attention layer
corresponding to each input vector a, which is combined to form the output.

Supplementary Figure 4. Heatmaps for both the Platyer (left) and Fix-CNN (right) models
At three time points (200ps, 400ps, and 600ps), heatmaps for both the Platyer (left) and Fix-CNN
(right) models were generated. The heatmaps visualize the areas of focus within the models. These
visual representations reveal that, for the most part, the Platyer model's attention is primarily
concentrated on proteins and surfaces. Only at 600ps, the region of focus for the Fix-CNN model
shifts towards proteins, demonstrating a more favorable concentration compared to Platyer.

1 83 16
5

24
7

32
9

41
1

49
3

57
5

65
7

73
9

82
1

90
3

98
5

10
67

11
49

12
31

13
13

13
95

14
77

15
59

16
41

17
23

18
05

18
87

19
69

20
51

21
33

22
15

22
97

23
79

24
61

25
43

26
25

27
07

27
89

28
71

29
53

-50

0

50

100

150

200

platyer-10 original

1 91 18
1

27
1

36
1

45
1

54
1

63
1

72
1

81
1

90
1

99
1

10
81

11
71

12
61

13
51

14
41

15
31

16
21

17
11

18
01

18
91

19
81

20
71

21
61

22
51

23
41

24
31

25
21

26
11

27
01

27
91

28
81

29
71

30
61

31
51

32
41

-50

0

50

100

150

200

250

platyer-5 original

1 91 18
1

27
1

36
1

45
1

54
1

63
1

72
1

81
1

90
1

99
1

10
81

11
71

12
61

13
51

14
41

15
31

16
21

17
11

18
01

18
91

19
81

20
71

21
61

22
51

23
41

24
31

25
21

26
11

27
01

27
91

28
81

29
71

30
61

31
51

32
41-20

0
20
40
60
80

100
120
140
160
180

platyer-4 original

Supplementary Figure 5. Comparison of PMF curves of three different nano-resulting
surfaces with the results of Platyer model predicting curves
The horizontal and vertical axes of these curves are the same as Fig.4 D-G in the manuscript.

Supplementary Tables
Supplementary Table 1. Platyper model’s evaluation results
Evaluation indicators Fix-CNN CNN LSTM Platyper
R-squared 0.9666 0.8207 0.9675 0.9748
Mean Squared Error 12.199 65.4506 11.8572 9.2027
Root Mean Squared
Error

3.4927 8.0902 3.4434 3.0336

Mean Absolute Error 2.8525 5.5028 2.8103 2.4818
Median Absolute
Error

2.5319 3.7127 2.4905 2.1774

Mean Absolute
Percentage Error

14.257 72.1345 37.5173 21.4935

Explained Variance 0.969553828 0.820732117 0.968199909 0.975620508

Supplementary Table 2. Platyper model main network parameters
Layer Input Size Output Size Parameters

Conv2d (conv1) (3, H, W) (6, H_out, W_out) (355 + 1) * 6 = 456
MaxPool2d (6, H_out, W_out) (6, H_out/2, W_out/2) 0
Conv2d (conv2) (6, H_out/2,

W_out/2)
(9, H_out/4, W_out/4) (655 + 1) * 9 = 409

MaxPool2d (9, H_out/4,
W_out/4)

(9, H_out/8, W_out/8) 0

Conv2d (conv3) (9, H_out/8,
W_out/8)

(6, H_out/16,
W_out/16)

(955 + 1) * 6 = 456

MaxPool2d (6, H_out/16,
W_out/16)

(6, H_out/32,
W_out/32)

0

Conv2d (conv4) (6, H_out/32,
W_out/32)

(3, H_out/64,
W_out/64)

(655 + 1) * 3 = 228

Linear (fc1) (3H_out/64W_out/64
)

125 (3H_out/64W_out/64 + 1) *
125 = 70313

LSTM - 100 See LSTM formula
Conv2d (query_conv) (1, 15, 15) (1, 15, 15) (111 + 1) * 1 = 2
Conv2d (key_conv) (1, 15, 15) (1, 15, 15) (111 + 1) * 1 = 2
Conv2d (value_conv) (1, 15, 15) (1, 15, 15) (111 + 1) * 1 = 2
Linear (fc2) 225 84 (225 + 1) * 84 = 19044
Linear (fc3) 84 1 (84 + 1) * 1 = 85

Supplementary Table 3. Platyper Model CBAM Partial Network Parameters
Layer Input Size Output Size Parameters

CBAM (in_planes, H, W) (out_planes, H_out,
W_out)

Total parameters from
above layers

BasicConv (conv) (in_planes, H, W) (out_planes, H_out,
W_out)

(in_planes *
out_planes *
kernel_size^2 + 1) *
out_planes

BatchNorm2d (bn) (out_planes, H_out,
W_out)

(out_planes, H_out,
W_out)

2 * out_planes

ChannelGate (mlp) (gate_channels,
H_out, W_out)

(gate_channels, 1, 1) (gate_channels + 1) *
(gate_channels //
reduction_ratio + 1)

Flatten (gate_channels, 1, 1) (gate_channels) -
Linear (gate_channels) (gate_channels) (gate_channels + 1) *

gate_channels
ChannelPool (gate_channels,

H_out, W_out)
(2, H_out, W_out) -

Supplementary Table 4. Platyper Model CBAM Partial Network Parameters
Hyperparameter Value Description

Epochs 10 Number of training epochs
Learning Rate 0.0001 Learning rate for the optimizer
Criterion MSELoss Mean Squared Error Loss
Optimizer NAdam NAdam optimizer (not

standard in PyTorch, but
assumed to be similar to
Adam)

Batch Size 50 The number of samples
inputted simultaneously during
each model training

Activation Function ReLU CNN_LSTM_Attention
BasicConv (conv)
ChannelGate (mlp)

Supplementary Table 5. Evaluation of predicted results for different nanosurfaces
Evaluation indicators Fix-CNN-10 LSTM-10 Platyper-10
R-squared 0.9323 0.9126 0.9478
Mean Squared Error 134.6377 173.8669 103.936
Root Mean Squared
Error

11.6034 13.1859 10.1949

Mean Absolute Error 9.7243 11.6945 8.2688
Median Absolute
Error

8.5735 11.2772 8.0194

Mean Absolute
Percentage Error

68.0909 57.0497 57.5514

Explained Variance 0.954885859 0.930736256 0.978826284

Evaluation indicators Fix-CNN-5 LSTM-5 Platyper-5
R-squared 0.9384 0.9242 0.9597
Mean Squared Error 261.9417 385.1792 204.8513
Root Mean Squared
Error

16.1846 19.626 14.3126

Mean Absolute Error 14.2055 16.7505 12.8628
Median Absolute
Error

13.7278 18.83 13.2143

Mean Absolute
Percentage Error

163.9078 192.1586 94.2853

Explained Variance 0.930801175 0.938205323 0.951526425

Evaluation indicators Fix-CNN-4 LSTM-4 Platyper-4
R-squared 0.848 0.8428 0.8883
Mean Squared Error 431.8362 446.7944 374.2619
Root Mean Squared
Error

20.7807 21.1375 19.3458

Mean Absolute Error 18.3242 17.805 17.4185
Median Absolute
Error

20.9332 20.1654 16.6868

Mean Absolute
Percentage Error

165.4007 141.6449 71.4921

Explained Variance 0.862649047 0.85095861 0.879410326

