Electronic Supplementary Material (ESI) for Materials Horizons. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information for

Prediction of superconductivity in a series of tetragonal transition

metal dichalcogenides

Jiale Liu, Huidong Wang, Xiaojun Shi, and Xiaoming Zhang*

College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao, Shandong 266100, China

*Correspondence to: zxm@ouc.edu.cn

Content

References1	8
Section 4. The feasibility of exfoliating <i>d</i> Lieb-MS ₂ monolayer	13
Section 3. Details of estimating the superconductivity of <i>d</i> Lieb-MS ₂ monolayer	11
Section 2. The magnetic property of <i>d</i> Lieb-MnS ₂ monolayer	.8
Section 1. Details of first-principles calculations on <i>d</i> Lieb-MS ₂ monolayer	.2

Section 1. Details of first-principles calculations on *d*Lieb-MS₂ monolayer

We employed the Quantum ESPRESSO (QE) package ¹ to calculate the phonon spectra of *d*Lieb-MS₂ monolayers within the framework of density functional theory (DFT) ^{2,3} and density functional perturbation theory (DFPT) ⁴. The generalized gradient approximation (GGA) in the functional type of Perdew-Burke-Ernzerh (PBE) ⁵ was employed for the PAW pseudopotential ⁶ and the energy cutoff was set to 100 Ry. The crystal structures of *d*Lieb-MS₂ monolayers were fully optimized with a convergence threshold of 10⁻⁴ for energy and 10⁻³ for force under the **k**-point sampling of 20×20×1 in Brillouin zone. The population of electrons was determined by the gaussian smearing with the smearing type of Methfessel-Paxton first-order spreading and the smearing width of 0.01 Ry. The dynamic matrix and phonon frequency of optimized *d*Lieb-MS₂ were computed on a $10\times10\times1$ **q**-point sampling in Brillouin zone.

The Vienna *Ab initio* Simulation Package (VASP)⁷ was employed to calculate the elastic constants and electronic properties of *d*Lieb-MS₂ monolayers based on the DFT ^{2, 3}, where GGA-PBE ⁵ and the PAW pseudopotential ⁶ were used. The energy cutoff was set to 500 eV and the spin-orbit coupling effect was included. The crystal structures of *d*Lieb-MS₂ monolayers were fully optimized with the convergence criteria of 10^{-5} eV for energy and 0.01 eV/Å for force. The method of Methfessel-Paxton first-order spreading with the smearing width of 0.10 eV was employed to determine the occupancies of electrons in metallic bands. A uniform $30 \times 30 \times 1$ Monkhorst-Pack **k**-point sampled in Brillouin zone was used to perform the structural relaxation and self-consistent calculations. The self-consistent calculations enable us to obtain the density-of-states (DOS) and spin-textures patterns, which were followed by non-self-consistent calculations to calculate the electronic band structures along high-symmetry directions.

The thermodynamic stability of screened *d*Lieb-MS₂ monolayer at finitetemperature has been checked by performing *ab initio* molecular dynamics simulations (AIMD) ⁸ based on the VASP ⁷, which lasted 5000 fs with the time step of 1 fs under the NVT ensemble. The AIMDs were simulated at the temperatures of 50, 100, 150, 200, 250, and 300 K, which were controlled by the Nose-Hoover thermostat. We only show the simulated results of maximum temperature at which the screened *d*Lieb-MS₂ monolayer can be stabilized. To make a reliable comparation with other transition metal dichalcogenides (TMDCs), the total energies of screened *d*Lieb-MS₂ (M=Zr, Nb, Mn, Fe, Re, Os) monolayers and related TMDCs monolayers (1T-ZrS₂, 1T-MnS₂, 1T-NbS₂, 1H-NbS₂, d1T"-ReS₂, 1T-MoS₂, 1H-MoS₂, 1T-WS₂, 1H-WS₂, and OsS₂ formed by pentagonal rings) were calculated by using VASP ⁷ under the **k**-points sampling with the uniform resolution of $0.04 \times 2\pi$ Å⁻¹ in Brillouin zone.

	C_{11} (N/m)	C_{12} (N/m)	C ₆₆ (N/m)
dLieb-ZrS ₂	31.8	2.3	2.7
dLieb-NbS ₂	25.3	11.0	6.6
dLieb-MnS ₂	32.6	4.1	9.0
dLieb-FeS ₂	38.8	15.1	6.2
dLieb-ReS ₂	33.4	9.7	9.5
dLieb-OsS ₂	38.4	16.1	4.1

Table S1. The elastic constants C_{ij} of dLieb-MS₂ monolayers.

Figure S1. The phonon spectra of (a) dLieb-ZrS₂, (b) dLieb-NbS₂, (c) dLieb-MnS₂, (d) dLieb-FeS₂, (e) dLieb-ReS₂, and (f) dLieb-OsS₂.

Figure S2. The variations of total energy during the AIMDs for the (a) dLieb-ZrS₂ at 100 K, (b) dLieb-NbS₂ at 300 K, (c) dLieb-MnS₂ at 300 K, (d) dLieb-FeS₂ at 200 K, (e) dLieb-ReS₂ at 300 K, and (f) dLieb-OsS₂ at 300 K. The insets are the crystal structures after simulating 5000 fs.

Figure S3. The band structure (left panel) and projected DOS (right panel) of *d*Lieb-ZrS₂. The colours on the band lines along the Γ -X and L-Y paths represent the expectation values $\langle \sigma_y \rangle$, while that along the X-L and Y- Γ paths represent the expectation values $\langle \sigma_x \rangle$. The projected DOS of Zr-*d* and S-*p* orbitals was plotted by using red and blue coloured lines, respectively.

Figure S4. The spin texture patterns for the lowest band crossing the Fermi level of (a) dLieb-NbS₂, (b) dLieb-FeS₂, (c) dLieb-ReS₂, and (d) dLieb-OsS₂. The in-plane spin components are presented by arrows, while the colour represents out-of-plane component of spin orientation.

Figure S5. The orbital resolved band structures of *d*Lieb-NbS₂ with the contribution of (a) Nb- d_{xy} , (b) Nb- d_{xz} , (c) Nb- d_{yz} , (d) Nb- d_{z2} , (e) Nb- d_{x2-y2} , (f) S- p_x , (g) S- p_y , and (h) S- p_z orbital being drawn proportionally to the magnitude of red dots. The Fermi energy is set to zero.

Figure S6. The orbital resolved band structures of *d*Lieb-FeS₂ with the contribution of (a) Fe- d_{xy} , (b) Fe- d_{xz} , (c) Fe- d_{yz} , (d) Fe- d_{z2} , (e) Fe- d_{x2-y2} , (f) S- p_x , (g) S- p_y , and (h) S- p_z orbital being drawn proportionally to the magnitude of red dots. The Fermi energy is set to zero.

Figure S7. The orbital resolved band structures of dLieb-ReS₂ with the contribution of (a) Re- d_{xy} , (b) Re- d_{xz} , (c) Re- d_{yz} , (d) Re- d_{z2} , (e) Re- d_{x2-y2} , (f) S- p_x , (g) S- p_y , and (h) S- p_z orbital being drawn proportionally to the magnitude of red dots. The Fermi energy is set to zero.

Figure S8. The orbital resolved band structures of dLieb-OsS₂ with the contribution of (a) Os- d_{xy} , (b) Os- d_{xz} , (c) Os- d_{yz} , (d) Os- d_{z2} , (e) Os- d_{x2-y2} , (f) S- p_x , (g) S- p_y , and (h) S- p_z orbital being drawn proportionally to the magnitude of red dots. The Fermi energy is set to zero.

Section 2. The magnetic property of *d*Lieb-MnS₂ monolayer

To study the magnetic properties of the screened *d*Lieb-MS₂ (M=Zr, Nb, Mn, Fe, Re, Os) monolayers, we carry out spin-polarized calculations by assuming an initial non-zero magnetic moment on M atoms. The method of Methfessel-Paxton first-order spreading was employed to determine the occupancies of electrons in metallic bands. We have carefully checked the convergence of magnetic property by using different width of the smearing under a serious of **k**-points sampling in Brillouin zone. Our calculations indicate only the *d*Lieb-MnS₂ is magnetic, which is well converged when the **k**-points sampling exceeding $30 \times 30 \times 1$ and the magnetic moment converged around ~0.8 µB per MnS₂ unit (Fig. S9). The existence of magnetism in *d*Lieb-MnS₂ are also mentioned in the Computational 2D Materials Database ⁹. Since the width of the smearing have little influence on the magnetic propriety when the **k**-points sampling exceeding $30 \times 30 \times 1$ (Fig. S9), the smearing width of 0.10 eV is employed as an example to perform following calculations on the magnetic *d*Lieb-MnS₂ monolayer.

Figure S9. The dependence of magnetic moment (MM) per MnS₂ unit on the **k**-points sampling $n \times n \times 1$ and on the width (sigma=0.05, 0.10, 0.15, 0.20 eV) of smearing.

The magnetic ground state of $dLieb-MnS_2$ was determined by total energy calculations, and the calculated total energy of magnetic $dLieb-MnS_2$ monolayer is 5.2 meV/atom lower than that of $dLieb-MnS_2$ without considering magnetism. The electronic band structure (Fig. S10a) and DOS (Fig. S10b) indicate the $dLieb-MnS_2$ is a magnetic metal, because of both the up-spin and down-spin polarized electronic states crossing with the Fermi level. The iso-surface of the spin density for the magnetic $dLieb-MnS_2$ (Fig. S10c) shows that the Mn atoms are highly spin-polarized and contribute mainly to the non-zero magnetic moment. The band structure of $dLieb-MnS_2$ monolayer with considering spin-orbit coupling was plotted in Fig. S10a).

Figure S10. (a, b) The electronic band structure (a) and DOS (b) of magnetic dLieb-MnS₂ monolayer. The up-spin and down-spin components are respectively plotted by using black and red lines. (c) The real-space distribution of spin density. (d) The band structure of magnetic dLieb-MnS₂ monolayer with considering spin-orbit coupling.

To reveal the origin of the magnetism in dLieb-MnS₂ monolayer, we compare the total DOS of dLieb-MnS₂ without considering magnetism to that of nonmagnetic dLieb-MS₂ (M= Nb, Fe, Re, Os) monolayers in Fig. S11a. One can clearly see the dLieb-MnS₂ possesses the largest DOS at the Fermi level, which is related to the band lines of localized $3d_{z^2}$ -orbitals crossing with the Fermi level (Fig. S11b). The largest DOS of dLieb-MnS₂ at the Fermi level can be greatly reduced by introducing magnetism (inset of Fig. S11a). Together with the odd number of electrons per Mn atom, the emergence of magnetism in dLieb-MnS₂ can be attributed to the Stoner effect ^{10, 11}, and a large DOS of localized *d*-orbitals at the Fermi level tends to inducing magnetic instability. This can be demonstrated by analyzing the magnetic property of dLieb-MnS2 under different biaxial compressive strain. The total DOS of dLieb-MnS2 without considering magnetism is basically unchanged when the magnitude of compressive strain is smaller than 2% and decreases when increasing the magnitude of compressive strain from 2% (Fig. S11c). Then the calculations with considering spin polarization were performed on the compressed dLieb-MnS₂ to evaluate the magnetic moment (Fig. S11d), which show that the magnetism can be well maintained when the magnitude of compressive strain is smaller than 2%, and will transform to non-magnetic state when further increasing the magnitude of compressive strain from 2%. The closely correlation between the magnetism and the magnitude of DOS at the Fermi level indeed reveals that the Stoner effect plays important role.

Figure S11. (a) The comparation between the total DOS of $dLieb-MnS_2$ without considering magnetism and that of nonmagnetic $dLieb-MS_2$ (M= Nb, Fe, Re, Os) monolayers. Inset plots the comparation between the total DOS of $dLieb-MnS_2$ with and without considering magnetism. (b) The band structures of $dLieb-MnS_2$ without considering magnetism, where the contribution of $Mn-d_{z^2}$ is drawn proportionally to the magnitude of red dots. (c) The variation of the total DOS of $dLieb-MnS_2$ without considering magnetism under different biaxial compressive strain. (d) The magnetic moment (MM) per MS₂ unit under different biaxial strain for the $dLieb-MS_2$.

To further confirm above analysis, we propose the Stoner magnetism can be induced and controlled in other metallic dLieb-MS₂ monolayers by applying biaxial tensile strains (Fig. S11d), which plays the role of making the *d*-orbitals of M atom more localized and thus induce the magnetic instability. Specifically, one can see the magnetic moment of dLieb-NbS₂ at the tensile strain of 5% is nearly equal to that of equilibrium dLieb-MnS₂. This fact can be understood from that the Nb atoms possesses odd number of electrons and the localized $4d_{z^2}$ -orbitals also form narrow band lines crossing with Fermi level (Fig. S5). For the dLieb-ReS2 with odd number of electrons, a larger tensile strain is demanded to introducing the magnetism due to the $5d_{z^2}$ -orbitals of Re atoms are less localized, which can be seen from the its band structures (Fig. S7). For the dLieb-FeS₂ and dLieb-OsS₂ with even number of electrons, the band lines of d_{z^2} -orbitals no longer cross with the Fermi level (Fig. S6 and S8). Despite this, the tensile strain could also introduce the Stoner magnetism in dLieb-FeS₂ due to the localized 3*d*-orbitals, while the less localized 5*d*-orbitals of Os still preserve the timereversal symmetry of *d*Lieb-OsS₂ even if the tensile strain reach up to 30% (Fig. S11d). Furthermore, the dependence of magnetic property on the tensile strain also demonstrate that the dLieb-MS₂ (M=Nb, Fe, Re, Os) monolayers are indeed nonmagnetic metals at their equilibrium crystal structures (Fig. S11d), which is compatible with the existence of superconductivity.

Section 3. Details of estimating the superconductivity of *d*Lieb-MS₂ monolayer

During the calculations of phonon spectra within the framework of DFPT ⁴, the electron-phonon coupling (EPC) strength was estimated for the metallic dLieb-MS₂ (M=Nb, Re, Fe, Os) monolayer by using the QE package ¹ based on the DFT ^{2, 3}. The dynamic matrix and phonon frequency of optimized dLieb-MS₂ were computed on a 10×10×1 q-point mesh with a 20×20×1 k-point sampling, and a finer 40×40×1 k-point grid is used in the EPC calculations. Specifically, the EPC was calculated via $\lambda(\omega) =$ $2\int_0^{\omega} d\omega' \frac{\alpha^2 F(\omega')}{\omega'}$, where the Eliashberg spectral function $\alpha^2 F(\omega)$ is defined by $\alpha^2 F(\omega) = \frac{1}{2} \sum_{\mathbf{q}\nu} w_{\mathbf{q}} \omega_{\mathbf{q}\nu} \lambda_{\mathbf{q}\nu} \delta(\omega - \omega_{\mathbf{q}\nu})$. The momentum **q** and mode ν resolved EPC $\lambda_{\mathbf{q}\nu}$ is given by $\lambda_{\mathbf{q}\nu} = \frac{\hbar}{2m_0 N_F \omega_{\mathbf{q}\nu}^2} \sum_{mn\mathbf{k}} w_{\mathbf{k}} \left| \left\langle \psi_{m\mathbf{k}+\mathbf{q}} \right| \partial_{\mathbf{q}\nu} V \left| \psi_{n\mathbf{k}} \right\rangle \right|^2 \delta(\epsilon_{n\mathbf{k}}) \delta(\epsilon_{m\mathbf{k}+\mathbf{q}})$ and shown in Fig. S12. The $\psi_{n\mathbf{k}}$ is the electronic wavefunction for band *n*, wavevector \mathbf{k} , and eigenvalue $\epsilon_{n\mathbf{k}}$. $\partial_{\mathbf{q}\nu}V$ is the derivative of self-consistent potential associated with the phonon wavevector **q**, phonon branch v and phonon frequency $\omega_{\mathbf{q}v}$. δ is the Dirac delta function. The $w_{\mathbf{k}}$ and $w_{\mathbf{q}}$ are respectively the Brillouin zone weight of \mathbf{k} point and **q**-point. m_0 is the convenient reference mass and N_F is DOS at the Fermi level. The total EPC λ corresponds to the value of $\lambda(\omega_{\text{max}})$ with the ω_{max} being the maximum of phonon frequency.

We employ the Allen-Dynes-modified McMillan equation ^{13, 14} to evaluate the superconducting transition temperatures $T_{\rm C}$ with the Coulomb pseudopotential $\mu^* = 0.1$. For the *d*Lieb-MS₂ with the total EPC $\lambda < 1.5$, the Allen-Dynes-modified McMillan equation without correction factors was employed, which is given by

$$T_{C} = \frac{\omega_{\log}}{1.2} \exp\left[\frac{-1.04 \times (1+\lambda)}{\lambda - \mu^{*} \times (1+0.62 \times \lambda)}\right]$$

where the logarithmically averaged frequency ω_{log} is defined by $\omega_{log} = exp\left[\frac{2}{\lambda}\int \frac{\alpha^2 F(\omega)}{\omega} log(\omega)d\omega\right]$. This equation is the most widely used approach for the calculation of $T_{\rm C}$ from first principles ¹⁵. For the *d*Lieb-MS₂ with the total EPC $\lambda > 1.5$, the correction factors f_1 and f_2 were included in the Allen-Dynes-modified McMillan equation:

$$T_{C} = \frac{f_{1}f_{2}\omega_{\log}}{1.2} \exp\left[\frac{-1.04 \times (1+\lambda)}{\lambda - \mu^{*} \times (1+0.62 \times \lambda)}\right]$$

with $f_{1} = \sqrt[3]{\left[1 + \left(\frac{\lambda}{2.46(1+3.8\mu^{*})}\right)^{\frac{3}{2}}\right]}, \quad f_{2} = 1 + \frac{\left(\frac{\bar{\omega}_{2}}{\omega_{\log}} - 1\right)\lambda^{2}}{\lambda^{2} + \left[1.82(1+6.3\mu^{*})\frac{\bar{\omega}_{2}}{\omega_{\log}}\right]^{2}}.$ Here the mean

square frequency $\overline{\omega}_2$ is defined by $\overline{\omega}_2 = \sqrt{\frac{2}{\lambda} \int_0^\infty \alpha^2 F(\omega) \omega d\omega}$. This extended form of Allen-Dynes-modified McMillan equation is so accurate that the predicted T_C is usually identical to those obtained by the solution of the Eliashberg equations for conventional superconductors ¹⁵.

Figure S12. The phonon spectra of (a) dLieb-NbS₂, (b) dLieb-FeS₂, (c) dLieb-ReS₂, and (d) dLieb-OsS₂, where the coloured dots are drawn proportionally to the magnitude of momentum **q** and mode v resolved EPC λ_{qv} .

Section 4. The feasibility of exfoliating *d*Lieb-MS₂ monolayer

We here propose the *d*Lieb-MS₂ monolayer can be exfoliated from its bulk counterpart, based on first-principles calculating the formation energy E_{form} of bulk *d*Lieb-MS₂ and the exfoliation energy E_{XF} of *d*Lieb-MS₂ monolayer from *d*Lieb-MS₂ slab. The first-principles calculations were performed by including van der Waals interaction, which is described by DFT-D3 functional with Becke-Jonson damping and implemented in the VASP ⁷. The GGA-PBE ⁵ was employed for the PAW pseudopotential ⁶ and the energy cutoff was set to 500 eV. The **k**-points with the resolution of $0.04 \times 2\pi$ Å⁻¹ were sampled in Brillouin zone. The crystal structures of bulk *d*Lieb-MS₂ and related materials were fully optimized with the convergence criteria of 10^{-5} eV for energy and 0.01 eV/Å for force. The total energy was calculated by selfconsistent calculations, which were followed by non-self-consistent calculations to calculate the electronic band structures along high-symmetry directions.

Firstly, the total energy was employed to determine the most favorable stacking patterns of bulk *d*Lieb-MS₂. Referring to the symmetry of *d*Lieb-MS₂ monolayer, there are eight stacking patterns can be constructed, including AA (Fig. S13a), AB[X_{0.5}] (Fig. S13b), AB[Y_{0.5}] (Fig. S13c), AB[X_{0.5}|Y_{0.5}] (Fig. S13d), AB[R₉₀] (Fig. S13e), AB[X_{0.5}|R₉₀] (Fig. S13f), AB[Y_{0.5}|R₉₀] (Fig. S13g), AB[X_{0.5}|Y_{0.5}|R₉₀] (Fig. S13h) stacking. Here the [X_{0.5}] and [Y_{0.5}] mean the layer B moving half lattice constant with respect to the layer A along X and Y direction, respectively. The [R₉₀] means the layer B rotating by 90°. The combination between the [X_{0.5}], [Y_{0.5}], and [R₉₀] means these operations are performed sequentially. The calculated total energy (Table S2) of bulk *d*Lieb-MS₂ with different stacking patterns indicates all of the *d*Lieb-MS₂ favorite the AB[X_{0.5}|Y_{0.5}|R₉₀] stacking with the space group of P4₂/nmc, except the AA stacked *d*Lieb-FeS₂ with the space group of P4*m*2 possessing low total energy. Consequently, the following calculations were conducted on the AB[X_{0.5}|Y_{0.5}|R₉₀] stacked *d*Lieb-ZrS₂, *d*Lieb-MS₂, *d*Lieb-MS₂, *d*Lieb-ReS₂, and *d*Lieb-OsS₂, as well as the AA stacked *d*Lieb-FeS₂.

Figure S13. The crystal structures of bulk dLieb-MS₂ constructed by (a) AA, (b) AB[X0.5], (c) AB[Y0.5], (d) AB[X0.5|Y0.5], (e) AB[R90], (f) AB[X0.5|R90], (g) AB[Y0.5|R90], and (h) AB[X0.5|Y0.5|R90] stacking.

	<i>d</i> Lieb- ZrS ₂	<i>d</i> Lieb- NbS2	<i>d</i> Lieb- MnS ₂	<i>d</i> Lieb- FeS2	<i>d</i> Lieb- ReS2	<i>d</i> Lieb- OsS ₂
AA	1.94	3.96	0.54	0.00	8.05	5.72
AB [X _{0.5}]	24.94	23.48	38.88	21.96	36.55	36.73
AB [Y _{0.5}]	24.94	23.48	38.88	21.96	36.55	36.73
AB[X _{0.5} Y _{0.5}]	39.39	37.97	73.44	41.01	62.40	67.78
AB [R ₉₀]	42.15	40.01	89.66	68.26	67.21	76.87
AB[X0.5 R90]	26.12	23.18	47.25	20.78	40.96	39.70
AB[Y _{0.5} R ₉₀]	26.12	23.18	47.25	20.78	40.96	39.70
AB[X _{0.5} Y _{0.5} R ₉₀]	0.00	0.00	0.00	4.33	0.00	0.00

Table S2. The energy difference between the ground state pattern and other stacking patterns of bulk dLieb-MS₂. The total energy of ground state pattern is set to 0.00 eV, and the unit of the energy difference is meV/atom.

Next, the formation energy E_{form} of bulk dLieb-MS₂ was calculated to demonstrate their experimental feasibility. The E_{form} is defined as $E_{form} =$ $(E_{\text{total}} - \mu_{\text{M}} - 2E_{\text{S}})/3$, where the E_{total} is the total energy of bulk dLieb-MS₂ per MS₂ unit and the E_S is the energy of S atom in bulk S_6 . The energy of M atom μ_M is evaluated by $\mu_{\rm M} = E_{\rm M}/2$, where $E_{\rm M}$ is the total energy per primitive cell of bodycenter-cubic bulk M (M=Nb, Mn, and Fe) or of hexagonal bulk M (M=Zr, Re, and Os). To verify the correctness of our calculation, we calculated the formation energy of 2H-MoS₂ to be 2.85 eV per MoS₂ unit, which is in agreement with the previously reported 2.88 eV¹⁶. We also calculated the formation energy of 1T-MoS₂, 2H-WS₂, and 1T-WS₂ for comparation, where the μ_M is evaluated by $\mu_M = E_M/2$ and E_M is the total energy per primitive cell of body-center-cubic bulk M (M=Mo and W). The calculated formation energies for different TMDCs were summarized in Fig. S14. One can clearly see the formation energies are all negative except dLieb-OsS₂, indicating the feasibility of preparing the bulk dLieb-MS2 (M=Zr, Nb, Mn, Fe, and Re) in experiments. Since the OsS₂ monolayer constructed by pentagonal rings ¹⁷ is 0.19 eV/atom higher than the energy of dLieb-OsS2 monolayer with dynamic, mechanical, and thermodynamic stability, we hope the bulk dLieb-OsS₂ with extremely small positive E_{form} to be exist because of its thermodynamic stability at room temperature (Fig. 15f). Even through the E_{form} of $d\text{Lieb-ZrS}_2$ (Fig. S14a), $d\text{Lieb-NbS}_2$ (Fig. S14b), $d\text{Lieb-ReS}_2$ (Fig. S14e) is respectively higher than that of the synthesized 1T- ZrS2, 1T-NbS2, d1T"-ReS2, the energy difference is comparable to that between the synthesized 1T- and 2H-MoS₂ (Fig. S14g) or that between the synthesized 1T- and 2H-WS₂ (Fig. S14h). We thus expect the *d*Lieb-MS₂ to be experimentally synthesized under special condition.

Figure S14. The convex hull of formation energy for the bulk dLieb-MS₂ and related TMDCs. The opened symbols mean the corresponding TMDC was experimentally synthesized.

Figure S15. The variations of the total energy during the AIMDs for the (a) bulk dLieb-ZrS₂ at 100 K, (b) bulk dLieb-NbS₂ at 200 K, (c) bulk dLieb-MnS₂ at 300 K, (d) bulk dLieb-FeS₂ at 150 K, (e) bulk dLieb-ReS₂ at 200 K, and (f) bulk dLieb-OsS₂ at 300 K. The insets are the crystal structures after simulating 5000 fs.

The thermodynamic stability of bulk *d*Lieb-MS₂ at finite-temperature has been checked by AIMD ⁸, which ran for 5000 fs with the time step of 1 fs under the NVT ensemble and was implemented in the VASP ⁷. The AIMDs were simulated at the temperatures of 50, 100, 150, 200, 250, and 300 K, which were controlled by the Nose-Hoover thermostat. We only show the simulated results (Fig. S15) of maximum temperature at which the bulk *d*Lieb-MS₂ can be stabilized. One can clearly see simulated total energy converges well and the crystal structures are well maintained for the *d*Lieb-ZrS₂ at 100 K (Fig. S15a), the *d*Lieb-NbS₂ at 200 K (Fig. S15b), the *d*Lieb-MnS₂ at 300 K (Fig. S15c), the *d*Lieb-FeS₂ at 150 K (Fig. S15d), the *d*Lieb-ReS₂ at 200 K (Fig. S15e), and the *d*Lieb-OsS₂ at 300 K (Fig. S15f), indicating their thermodynamic stability. It should mention that the lower stabilized temperatures of bulk *d*Lieb-NbS₂, bulk *d*Lieb-FeS₂, and bulk *d*Lieb-ReS₂ than that of their monolayer counterparts (Fig. S2) can be attributed to the interlayer interactions in bulk *d*Lieb-MS₂.

Figure S16. (a) The crystal structure of dLieb-MS₂ slab used to calculating exfoliation energy E_{XF} , where the topmost monolayer is separated from the rest by the distance of d. (b) The calculated exfoliation energy of dLieb-MS₂ monolayer compared with that of 1H-MoS₂ monolayer.

Then, we calculated the exfoliation energy E_{XF} to evaluate the cost of removing a single layer from the surface of the bulk compound, which is defined as $E_{XF} = (E_{n-1} + E_1 - E_n)/A$. Here A is the area of the dLieb-MS₂ slab. E_n is the total energy of dLieb-MS₂ slab consisting of n layers of dLieb-MS₂, and the $E_{n-1} + E_1$ is total energy of the dLieb-MS₂ slab with one dLieb-MS₂ layer being separated from the rest (n-1) layers (Fig. S16a). The correctness of our calculation was verified by calculating the E_{XF} of 1H-MoS₂ monolayer to be 32.59 meV/Å², which is in agreement with the previously reported 30.82 meV/Å^{2 18}. Our calculated E_{XF} are smaller than that of 1H-MoS₂ monolayer for most dLieb-MS₂ monolayer (Fig. S16b), which demonstrates the feasibility of exfoliating dLieb-MS₂ monolayer from its bulk counterparts.

Lastly, we present the electronic band structures of the AB[X_{0.5}|Y_{0.5}|R₉₀] stacked dLieb-MS₂ (Mn=Zr, Nb, Re, Os) and AA stacked dLieb-FeS₂ in Fig. S17. One can see the stacking do not eliminate the band gap of dLieb-ZrS₂ and do not destroy the metallicity of dLieb-MS₂ (M= Nb, Fe, Re, Os). Because the space group of P4₂/nmc is centrosymmetric, the band structures of AB[X_{0.5}|Y_{0.5}|R₉₀] stacked dLieb-ZrS₂ (Fig. S17a), dLieb-NbS₂ (Fig. S17b), dLieb-ReS₂ (Fig. S17d), and dLieb-OsS₂ (Fig. S17e) are at least doubly degenerated, while the degeneracy is removed in certain band lines

of AA stacked *d*Lieb-FeS₂ (Fig. S17c) with the non-centrosymmetric space group of $P\bar{4}m2$. The magnetic *d*Lieb-MnS₂ also tends to form the AB[X_{0.5}|Y_{0.5}|R₉₀] stacking, which is 0.54 meV/atom lower than that the AA stacked *d*Lieb-MnS₂ (Table S2). Considering the small energy difference, we respectively plot the band structures of AA and AB[X_{0.5}|Y_{0.5}|R₉₀] stacked *d*Lieb-MnS₂ in Fig. S18a-b and S18c-d. Clearly, the magnetic property of *d*Lieb-MnS₂ is well preserved for both stacking patterns, and the band structures without (Fig. S18a and S18c) and with (Fig. S18b and S18d) considering spin-orbit coupling are qualitatively consistent with each other.

Figure S17. The electronic band structure of (a) $AB[X_{0.5}|Y_{0.5}|R_{90}]$ stacked *dLieb-ZrS*₂, (b) $AB[X_{0.5}|Y_{0.5}|R_{90}]$ stacked *dLieb-NbS*₂, (c) AA stacked *dLieb-FeS*₂, (d) $AB[X_{0.5}|Y_{0.5}|R_{90}]$ stacked *dLieb-ReS*₂, (e) $AB[X_{0.5}|Y_{0.5}|R_{90}]$ stacked *dLieb-OsS*₂. (f) The Brillouin zone of bulk *dLieb-MS*₂ and the **k**-point paths used to calculate electronic band structures.

Figure S18. The electronic band structure of (a, b) AA stacked and (c, d) AB[X_{0.5}|Y_{0.5}|R₉₀] stacked *d*Lieb-MnS₂ (a, c) without and (b, d) with considering spinorbit coupling.

References

- P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S. de Gironcoli, P. Delugas, F. Ferrari Ruffino, A. Ferretti, N. Marzari, I. Timrov, A. Urru and S. Baroni, J. Chem. Phys., 2020, 152, 154105.
- 2 P. Hohenberg and W. Kohn, *Phys. Rev.*, 1964, **136**, B864-B871.
- 3 W. Kohn and L. J. Sham, *Phys. Rev.*, 1965, **140**, A1133-A1138.
- 4 S. Baroni, S. de Gironcoli, A. Dal Corso and P. Giannozzi, *Rev. Mod. Phys.*, 2001, **73**, 515-562.
- 5 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- 6 P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953-17979.
- 7 G. Kresse and J. Furthmüller, *Comput. Mater. Sci.*, 1996, 6, 15-50.
- 8 S. Nosé, J. Chem. Phys., 1984, 81, 511-519.
- M. N. Gjerding, A. Taghizadeh, A. Rasmussen, S. Ali, F. Bertoldo, T. Deilmann,
 N. R. Knøsgaard, M. Kruse, A. H. Larsen, S. Manti, T. G. Pedersen, U.
 Petralanda, T. Skovhus, M. K. Svendsen, J. J. Mortensen, T. Olsen and K. S.
 Thygesen, 2D Mater., 2021, 8, 044002.
- 10 W. Jiang, H. Huang and F. Liu, *Nat. Commun.*, 2019, **10**, 2207.
- B. Cui, X. Zheng, J. Wang, D. Liu, S. Xie and B. Huang, *Nat. Commun.*, 2020, 11, 66.
- 12 P. B. Allen, *Phys. Rev. B*, 1972, **6**, 2577-2579.
- 13 W. L. McMillan, *Phys. Rev.*, 1968, **167**, 331-344.
- 14 P. B. Allen and R. C. Dynes, *Phys. Rev. B*, 1975, **12**, 905-922.
- 15 J. A. Flores-Livas, L. Boeri, A. Sanna, G. Profeta, R. Arita and M. Eremets, *Phys. Rep.*, 2020, **856**, 1-78.
- 16 D. Liu, Y. Guo, L. Fang and J. Robertson, *Appl. Phys. Lett.*, 2013, **103**.
- 17 Z.-x. Pang, X.-K. Hu and P. Li, Chem. Phys., 2021, 547, 111199.
- 18 T. Björkman, A. Gulans, A. V. Krasheninnikov and R. M. Nieminen, *Phys. Rev. Lett.*, 2012, **108**, 235502.