Electronic Supporting Information

Aggregation-Induced Emission (AIE) Organic Metal Halide Complex for X-ray Scintillation

Tunde Blessed Shonde,^a He Liu,^a Oluwadara Joshua Olasupo,^a Alexander Bouchard,^a Sara Bouchard,^a Annaliese Franklin,^a Xinsong Lin,^a Luis M. Stand,^{c,d} Biwu Ma ^{*,a,b}

^a Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.

^b Materials Science and Engineering Program, Florida State University, Tallahassee, FL 32306, USA

^c Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996, USA.

^d Scintillation Materials Research Canter, University of Tennessee, Knoxville, TN 37996, USA.

*Email: <u>bma@fsu.edu</u>

Experimental Section

Materials: Zinc Chloride (99.999%), 4-bromotriphenylamine (97%), pyridine-4-boronic acid (90%), tetrakis(triphenylphosphine)-palladium(0),(99%), potassium carbonate (\geq 99.0%), tetrahydrofuran (THF, \geq 99.9%), methanol (MeOH, \geq 99.9%), dichloromethane (DCM, \geq 99.8%), poly methylmethacylate (average molecular weight- 120, 000) were all purchased from Sigma Aldrich. N, N-Dimethylformamide (DMF \geq 99.8%), and diethyl ether (Et₂O, \geq 99.9%) were purchased from VWR. These materials were used without further purification after purchase. The elemental analysis was performed by Atlantic Microlab, Inc., Norcross, Georgia, USA.

Synthesis of N, N-diphenyl-4-(pyridin-4-yl) aniline (TPA-PD): 4-Bromotriphenylamine (7.4 mmol, 324.21 g/mol, 2.4 g), pyridine-4-boronic acid (12 mmol, 122.92 g/mol, 1.475 g), tetrakis(triphenylphosphine)-palladium(0) (0.297 mmol, 1155 g/mol, 0.344 g) and potassium carbonate (14.4 mmol, 138.21 g/mol, 2 g) were weighed into clean flask. This was followed by three cycles of repeated purging with N₂ and vacuum evacuation. A 120 ml of combined solvent (THF: MeOH; 1:1) of THF and MeOH was added with two cycles of purging with N₂ and vacuum evacuation. The mixture was refluxed at 90 °C for 36 hours under an N₂ atmosphere and then concentrated by rotary evaporation. TPA-PD was purified by column chromatography on silica gel with a mixture of petroleum ether and ethyl acetate as the eluent (7:1 by volume) to obtain about 55% TPA-PD white solid yield after recrystallization with DCM. ¹H NMR (600 MHz, DMF-D7) δ 8.65 - 8.61 (m, 2H), 7.82 (d, J = 8.7 Hz, 2H), 7.75 - 7.71 (m, 2H), 7.44 - 7.37 (m, 4H), 7.19 - 7.13 (m, 6H), 7.11 (d, J = 8.7 Hz, 2H).; HRMS (ESI) m/z: calc. value: 322.15; found 323.1567. Elemental analysis for TPA-PD (C₂₃H₁₈N₂) calculated: C, 85.68; H,5.63; N, 8.69.

Synthesis of N,N-diphenyl-4-(pyridine-4-yl)aniline zinc (II) chloride $(TPA-PD)_2ZnCl_2$: 2:1 molar ratio of N,Ndiphenyl-4-(pyridine-4-yl)aniline and zinc chloride were fully dissolved in the appropriate amount of DMF to form a precursor solution. This was followed by the addition of acetonitrile, 3× the volume of the precursor solution. Crystal formation of $(TPA-PD)_2ZnCl_2$ within a few hours to a day is observed. This is followed by washing with Et₂O, achieving about 87% yield of $(TPA-P)_2ZnCl_2$. ¹H NMR (600 MHz, DMF-D7) δ 8.69 – 8.65 (m, 2H), 7.90 – 7.84 (m, 4H), 7.41 (dd, J = 8.4, 7.5 Hz, 4H), 7.17 (ddd, J = 3.7, 3.0, 1.3 Hz, 6H), 7.11 (d, J = 8.8 Hz, 2H). Elemental analysis for $(TPA-PD)_2ZnCl_2$ ($C_{46}H_{36}N_4ZnCl_2$); Calculated: C, 70.73; H, 4.65; N, 7.17; Cl, 9.08. Found: C, 70.50; H, 4.65; N, 7.42; Cl, 9.09.

Fabrication of X-ray imaging scintillator film: 120 mg of (TPA-PD)₂ZnCl₂ crystals were initially partially dissolved in 0.5 ml of chloroform. To ensure thorough mixing, the solution was vortex-mixed and sonicated for 2 hours. Following the dissolution of the crystals, 80 mg of poly(methyl methacrylate) (PMMA) was added to the solution. This mixture was then subjected to an additional 2 hours of sonication. Once this step was complete, the resulting solution was further stirred using a magnetic stirrer for 30 minutes. To prepare the substrate for film deposition, an ozone-cleaned glass surface was utilized. The well-mixed and homogenized slurry was carefully drop-cast onto the glass substrate and allowed to dry for 24 hours. It is noteworthy that during the drying process, a beaker housing was used to cover the substrate. This precaution was taken to ensure the film's uniformity and quality.

Structural Characterization

Single-crystal X-ray data for $(TPA-P)_2ZnCl_2$ was collected using a Rigaku XtaLAB Synergy-S diffractometer equipped with a HyPix-6000HE Hybrid Photon Counting (HPC) detector and dual Mo and Cu microfocus sealed X-ray source at 150 K. The powder X-ray diffraction (XRD) patterns were obtained using a Rigaku Smartlab powder diffractometer equipped with a Cu K α X-ray source. Diffraction patterns were recorded from 5° to 50° 20 with a step size of 0.05° under a tube current of 44 mA and tube voltage of 40 kV at room temperature. Further structural analysis of TPA-PD was done using ¹H B500 NMR equipped with a high-resolution 5 mm TXI (H-C/N-D) Zg probe. Mass spectrometry was performed using liquid chromatography- time-of-flight/mass spectrometry (LC-TOF/MS) (TOF 6230, LC 1260, Agilent) in a positive electrospray ionization (ESI) mode with a mass range of 100 – 1700 m/z.

Optical Characterization

Excitation and steady-state photoluminescence were carried out using an Edinburgh FS5 steady state spectrometer with a 150 W xenon lamp. Time-Correlated Single Photon Counting (TCSPC) was performed for 10,000 counts using excitation from an Edinburgh EPL-360 picosecond pulsed diode laser. The PL decay was fitted using a biexponential decay function for TPA-PD and (TPA-PD)₂ZnCl₂ and a mono-exponential decay function for BBPZn. The weighted average lifetime was computed according to equation (1).

$$\tau_{avg} = \frac{\sum \alpha_i \tau_i^2}{\sum \alpha_i \tau_i}$$
(1)

where τ_i represents the decay time, and α_i represents the amplitude of each component. PLQY measurement was performed using Hamamatsu Quantaurus-QY Spectrometer (Model C11347-11) equipped with a xenon lamp, an integrating sphere sample chamber, and a CCD detector. The PLQYs were calculated using the equation;

$$\eta QE = \frac{I_s}{ES_R - ES_s} \tag{2}$$

Where I_s stands for the photoluminescence emission spectrum of the sample, and ES_s and ES_R represent the excitation spectrum for the sample and reference, respectively.

Thermal Stability Analysis

DSC studies were done using a TA instrument Q600 system. The sample was heated from room temperature to 700 °C at a 5 °C/min rate under an argon flux of 100 mL/min.

Radioluminescence Spectrum

The RL spectra were acquired using an Edinburgh FS5 spectrofluorometer (Edinburgh Instruments) equipped with an X-ray source (Moxtek Mini-X tube with a W target and 4 W maximum power output, see Table S5 for voltage, current X-ray dose relationship). The X-ray response intensity was examined and collected by a Hamamatsu R928 PMT. The radiation dose rate of the X-ray source was calibrated by using RaySafe 452 dosimeter. The pulse height spectra of ¹³⁷Cs were collected using a standard bialkali Hamamatsu R2059 photomultiplier tube connected to a Canberra 2005 pre-amplifier, Ortec 672 spectroscopy amplifier, and a Tukan 8K multichannel analyzer. A shaping time of 10 µs was used to ensure complete light collection. The absolute light yield in photons per MeV was measured via the single photoelectron technique using a factory-measured quantum efficiency R2059 PMT.

To determine the Limit of detection (LOD), a series of the background signals were recorded without the sample under X-ray irradiation under 3.08 to 221.39 to 3.08 μ Gy s⁻¹ measurement. Then, a series of signal responses were taken with the sample under the above conditions, and the slope was determined. The LOD was calculated using the equation below, where Bk_{std} is the standard deviation of the background responses.

$$LOD = \frac{3 * Bk_{std}}{Slope}$$
(5)¹

X-ray imaging

The X-ray imaging system is a lab-built X-ray imaging system comprising of an X-ray, sample holder, light ray reflector, and a digital camera. The X-ray source used in the imaging was a Moxtek Mini-X tube with a W target and 4 W maximum power output. In this built imaging system, the X-ray beam passed vertically through the object of interest, and the scintillator film, right below it. The optical path of resulting radioluminescence was then deflected towards the camera by a reflector angled at the imaging system to remove the negative effect caused by direct X-ray irradiation of the camera. A digital camera was used to capture the deflected image and save it in jpeg format.

Table S1. Single crystal structure data of (TPA-PD) ₂ ZnC	Table S1.	Single cry	stal structure	data of	(TPA-PD) ₂ ZnCl
--	-----------	------------	----------------	---------	----------------------------

	(TPA-PD) ₂ ZnCl ₂
Compound	$(C_{23}H_{18}N_2)_2ZnCl_2$
CCDC number	2181767
Empirical formula	C ₄₆ H ₃₆ N ₄ ZnCl ₂
Molecular weight/g/mole	781.06
Temperature/K	150
Crystal system	Monoclinic
Space group	P21/c
a/Å	21.9901(3)
b/Å	11.7699(2)
c/Å	15.3428(2)
α/°	90
β/°	106.6460(2)
γ/°	90
Volume/Å ³	3804.63(12)
Z	4
P _{calc} g/cm ³	1.364
F (000)	1616.0
H _{max} , k _{max} , I _{max}	27,14,19
T _{min} , T _{max}	0.059,0.620
µ/mm ⁻¹	2.483
R ₁ , wR ₂	0.0487 ^a , 0.1378 ^b
Goodness-of-fit on F ²	1.085

a)R₁= $\sum ||Fo| - |Fc|| / \sum |Fo||$. b) wR₂= $[\sum w(Fo^2 - Fc^2)^2 / \sum w(Fo^2)^2]^{1/2}$

Bonds	Angle (°)
Cl ₁ -Zn ₁ -Cl ₂	122.19
Cl ₁ -Zn-N ₁	107.23
Cl ₁ -Zn ₁ -N ₃	105.50
Cl ₂ -Zn ₁ -N ₁	107.99
N ₁ -Zn ₁ -N ₃	104.33
Zn1-N1-C ₂₄	121.2
Zn ₁ -N ₁ -C ₂₈	120.1
Bonds	Distance (Å)
Zn ₁ -Cl ₁	2.23
Zn ₁ -Cl ₂	2.24
Zn1-N1	2.05
Zn ₁ -N ₃	2.04

Table S2. Selected bond distance and angles of (TPA-PD)₂ZnCl₂.

Table S3. Fitting parameters for PL decay kinetics of BBPZn, TPA-PD, and (TPA-PD)₂ZnCl₂.

A ₁	τ ₁	A ₂	τ ₂	τ_{avg}
	(ns)		(ns)	(ns)

BBPZn	1.0000	4.0036			4.00
TPA-PD	0.6816	0.9657	0.3184	2.9245	1.59
(TPA-PD) ₂ ZnCl ₂	0.8388	1.1588	0.1612	4.1841	1.81

Table S4. A figure of merit for reported scintillators based on metal-organic complexes.

S/N	Material	Light yield (Photon/MeV)	Decay lifetime (ns)	LOD (nGyS ⁻¹)	Ref
1	CP1	21037	8.47× 10 ⁶ (PL)	34.45	1
2	CP2	10580	4.36× 10 ⁶ (PL)	62.64	1
3	СРЗ	13470	2.31× 10 ⁶ (PL)	45.02	1
4	(DXP)₂MnBr	18 400	8.01× 10 ⁶ (PL)	65.1	2
5	Tb-TPC	5453	1.34× 10 ⁵ (PL)	1114	3
6	Eu-TPC	6121	4.63× 10 ⁵ (PL)	520	3
7	CeCl ₃ -Bu	1920	NA	NA	4
8	CeBr ₃ -Prop	3218	NA	NA	4
9	Tb-1	4800	7.64 × 10 ⁵ (PL)	243	5
10	Passivated -Tb-1	9000	NA	146	5
12	BBPZn	6249	4.00 (PL) 6.78 (RL)	15.56	This work
13	(TPA-PD) ₂ ZnCl ₂	13 423	1.81 (PL) 5.24 (RL)	80.23	This work

Table S5. Experimental dose rate.

S/N	Dose rate	Voltage	Current
	(µgray/sec)	(kV)	(μΑ)
1	221.39	40	100

2	210.56	40	95
3	199.44	40	90
4	188.06	40	85
5	177.22	40	80
6	166.11	40	75
7	155.00	40	70
8	143.89	40	65
9	132.78	40	60
10	121.67	40	55
11	110.83	40	50
12	99.72	40	45
13	88.61	40	40
14	77.5	40	35
15	66.38	40	30
16	55.28	40	25
17	44.17	40	20
18	31.39	35	20
19	19.14	30	20
20	9.03	25	20
21	3.08	20	20



Figure S1. NMR characterization of TPA-PD. ¹H NMR of TPA-PD.

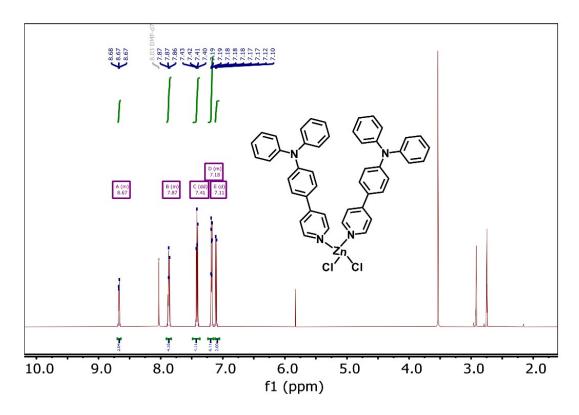


Figure S2. NMR characterization of (TPA-PD)₂ZnCl₂. ¹H NMR of (TPA-PD)₂ZnCl₂.

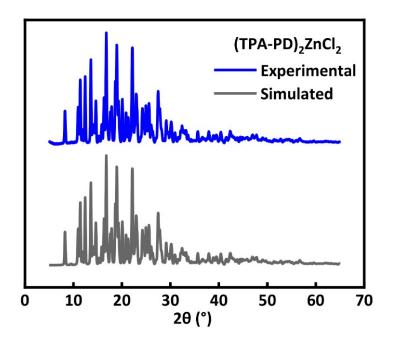


Figure S3. PXRD of (TPA-PD)₂ZnCl₂. Comparison between the experimental and simulated PXRD Patterns of (TPA-PD)₂ZnCl₂.

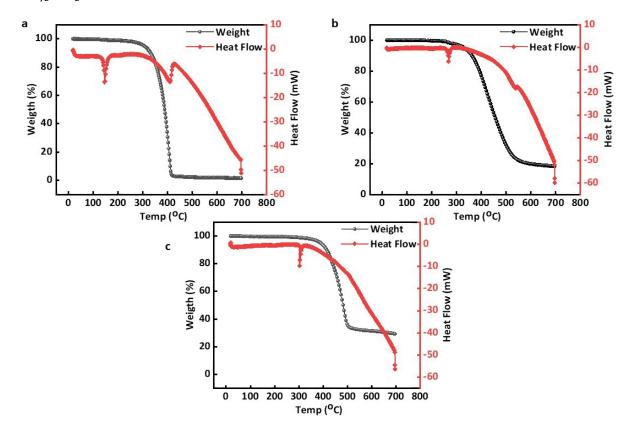


Figure S4. Thermal analysis. Thermogravimetric and differential scanning calorimetric analysis of a) TPA-PD; b) (TPA-PD)₂ZnCl₂; (c) BBPZn.

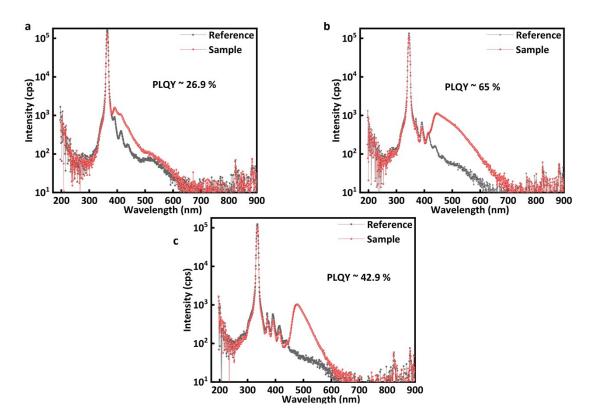


Figure S5. Photophysical Characterization. Photoluminescence Quantum Yields of; (a)TPA-PD; (b) (TPA-PD)₂ZnCl₂; and (c) BBPZn.

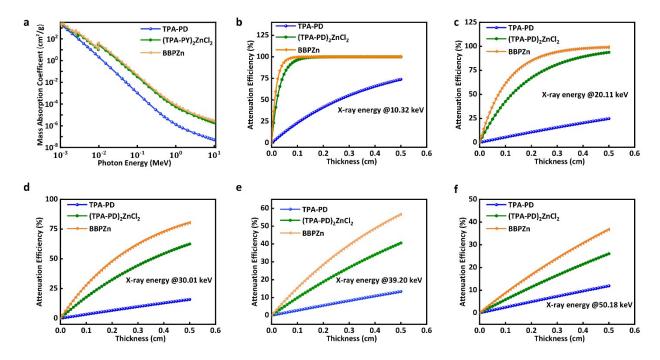


Figure S6. Computed high-energy radiation absorption. (a) Mass absorption coefficient vs photon energy plot of TPA-PD, (TPA-PD)₂ZnCl₂ and BBPZn; (b, c, d, e) X-ray Energy (10.32 KeV, 20.11 KeV, 30.01 keV, 39.20 keV and 50.18 keV respectively) efficiency vs thickness of TPA-PD, (TPA-PD)₂ZnCl₂, and BBPZn.

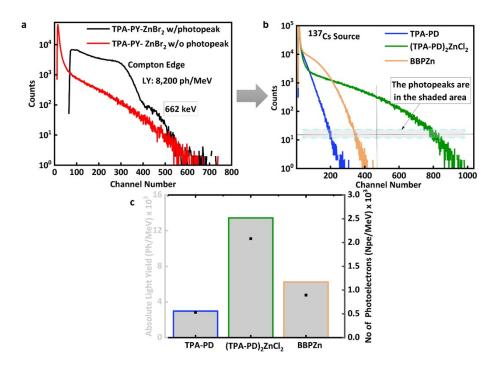


Figure S7. Absolute light yield measurement. (a) Counts vs Channel plot of $(TPA-PD)_2ZnBr_2$ with ¹³⁷ Cs excitation source (b)Counts vs Channel plot of TPA-PD, $(TPA-PD)_2ZnCl_2$ and BBPZn with ¹³⁷ Cs excitation source; (c) Absolute light and number of photoelectrons bar chart of TPA-PD, $(TPA-PD)_2ZnCl_2$, and BBPZn.

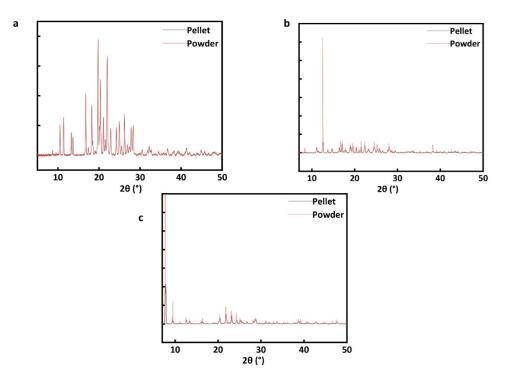


Figure S8. Powder X-ray Diffraction (PXRD). PXRD data comparison of pellet and powder of (a) TPA-PD; (b) (TPA-PD)₂ZnCl₂; (c) BBPZn.

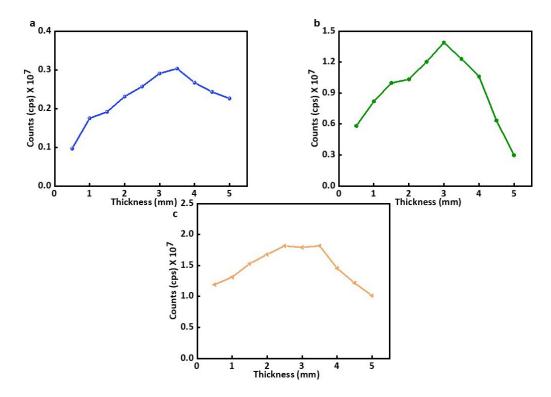


Figure S9. Thickness-dependent radioluminescence. Integrated radioluminescence of (a) TPA-PD; (b) (TPA-PD)₂ZnCl₂; (c) BBPZn at different thicknesses.

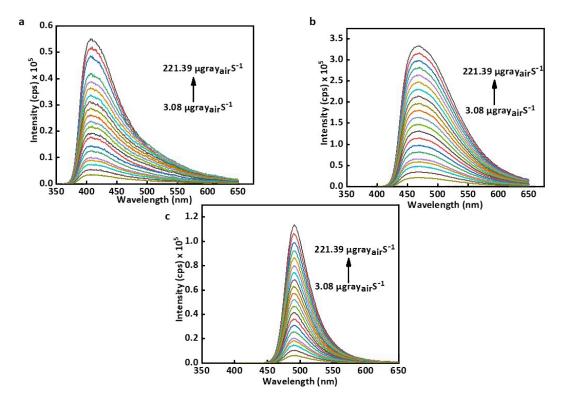


Figure S10. Dose-Response. Radioluminescence spectra of under X-ray excitation dose rate from 221.39 to 3.08 μ Gy_{air} s⁻¹ of; (a)TPA-PD; (b) (TPA-PD)₂ZnCl₂; (c) BBPZn.

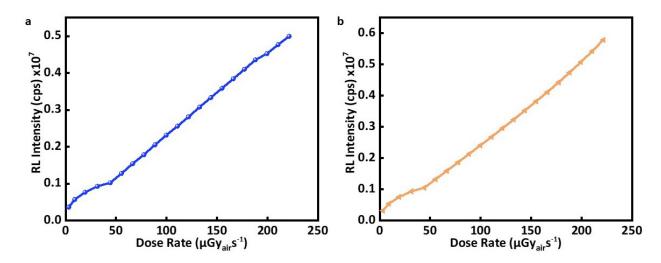
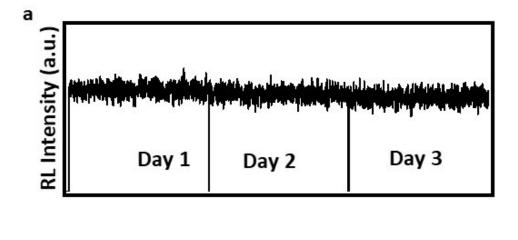



Figure S11. Dose-Response. Integrated radioluminescence spectra under X-ray excitation dose rate from 221.39 to 3. 08 μ Gy_{air} s⁻¹ of; (a)TPA-PD; (b) BBPZn.

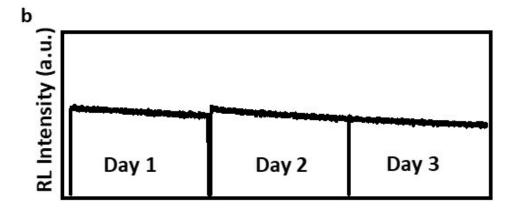


Figure S12. Radio-stability. Radiation stability under continuous irradiation (221.39 μ Gy_{air} s⁻¹) for 30 mins for Day 1, Day 2 and Day 3 of; (a) TPA-PD; (b) BBPZn.

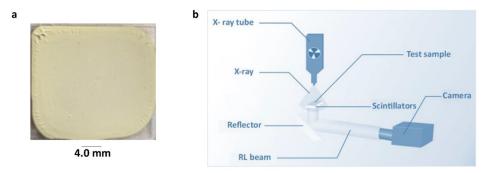


Figure S13. (a) 60 wt% (TPA-PD)₂ZnCl₂ - PMMA composite; (b) Schematic of lab-built X-ray imaging setup.

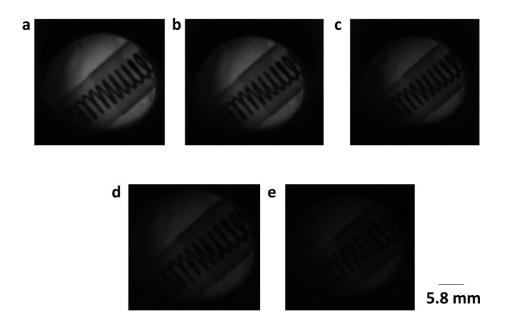


Figure S14. X-ray Images of encapsulated spring under various X-ray dose rates. X-ray images under; (a) 40 kV. 100μA; (b) 40 kV, 60 μA; (c) 40 kV, 40 μA; (d) 20 kV, 100μA; (e) 40 kV, 20 μA X-ray irradiation

References

- 1. Z. Zhou, H. Meng, F. Li, T. Jiang, Y. Yang, S. Liu and Q. Zhao, *Inorg Chem*, 2023, **62**, 5729-5736.
- 2. H. Meng, W. Zhu, F. Li, X. Huang, Y. Qin, S. Liu, Y. Yang, W. Huang and Q. Zhao, *Laser & amp; Photonics Reviews*, 2021, **15**, 2100309.
- 3. X. Liu, S. Wang, W. Xie, J. Ni, K. Xiao, S. Liu, W. Lv and Q. Zhao, *Journal of Materials Chemistry C*, 2023, **11**, 7405-7410.
- 4. L. A. Boatner, J. S. Neal, J. O. Ramey, B. C. Chakoumakos, R. Custelcean, E. V. D. Van Loef, G. Markosyan and K. S. Shah, *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 2013, **703**, 138-144.
- 5. Z. Chen, D. Lu, H. Xie, X. Yang, Y. Li, C. Bao, L. Lei and S. Xu, *Advanced Optical Materials*, 2021, **10**, 2102074.